Affiliation:
1. Departments of Neurosurgery and
2. Radiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki; and
3. Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Kanagawa, Japan
Abstract
OBJECTIVEMRI scans obtained within 48–72 hours (early postoperative MRI [epMRI]), prior to any postoperative reactive changes, are recommended for the accurate assessment of the extent of resection (EOR) after glioma surgery. Diffusion-weighted imaging (DWI) enables ischemic lesions to be detected and distinguished from the residual tumor. Prior studies, however, revealed that postoperative reactive changes were often present, even in epMRI. Although intraoperative MRI (iMRI) is widely used to maximize safe resection during glioma surgery, it is unclear whether iMRI is superior to epMRI when evaluating the EOR, because it theoretically shows fewer postoperative reactive changes. In addition, the ability to detect ischemic lesions using iMRI has not been investigated.METHODSThe authors retrospectively analyzed prospectively collected data in 30 patients with glioma (22 and 8 patients with enhancing and nonenhancing lesions, respectively) who underwent tumor resection. These patients had received preoperative MRI within 24 hours prior to surgery, postresection radiological evaluation with iMRI during surgery, and epMRI within 24 hours after surgery, with all neuroimaging performed using identical 1.5T MRI scanners. The authors compared iMRI or epMRI with preoperative MRI, and defined a postoperative reactive change as a new postoperative enhancement or T2 high-intensity area (HIA), if this lesion was outside of the preoperative original tumor location. In addition, postoperative ischemia was evaluated on DWI. The iMRI and epMRI findings were compared in terms of 1) postoperative reactive changes, 2) evaluation of the EOR, and 3) presence of ischemic lesion on DWI.RESULTSIn patients with enhancing lesions, a new enhancement was seen in 8 of 22 patients (36.4%) on iMRI and in 12 of 22 patients (54.5%) on epMRI. In patients with nonenhancing lesions, a new T2 HIA was seen in 4 of 8 patients (50.0%) on iMRI and in 7 of 8 patients (87.5%) on epMRI. A discrepancy between the EOR measured on iMRI and epMRI was noted in 5 of the 22 patients (22.7%) with enhancing lesions, and in 3 of the 8 patients (37.5%) with nonenhancing lesions. The occurrence of ischemic lesions on DWI was found in 5 of 30 patients (16.7%) on iMRI, whereas it was found in 16 of 30 patients (53.3%) on epMRI (p = 0.003); ischemic lesions were underestimated on iMRI in 11 patients.CONCLUSIONSOverall, given the lower incidence of postoperative reactive changes on iMRI, it was superior to epMRI in evaluating the EOR in patients with glioma, both with enhancing and nonenhancing lesions. However, because ischemic lesions can be overlooked on iMRI, the authors recommend only the additional DWI scan during the early postoperative period. Clinicians need to be mindful about not overestimating the presence of residual tumor on epMRI due to the high incidence of postoperative reactive changes.
Publisher
Journal of Neurosurgery Publishing Group (JNSPG)
Subject
Genetics,Animal Science and Zoology