Inducing transient language disruptions by mapping of Broca's area with modified patterned repetitive transcranial magnetic stimulation protocol

Author:

Rogić Maja1,Deletis Vedran12,Fernández-Conejero Isabel3

Affiliation:

1. Laboratory for Human and Experimental Neurophysiology, School of Medicine, University of Split, Croatia;

2. Department for Intraoperative Neurophysiology, Roosevelt Hospital, New York, New York; and

3. Intraoperative Neurophysiology Unit, University Hospital Bellvitge, Barcelona, Spain

Abstract

Object Until now there has been no reliable stimulation protocol for inducing transient language disruptions while mapping Broca's area. Despite the promising data of only a few studies in which speech arrest and language disturbances have been induced, certain concerns have been raised. The purpose of this study was to map Broca's area by using event-related navigated transcranial magnetic stimulation (nTMS) to generate a modified patterned nTMS protocol. Methods Eleven right-handed subjects underwent nTMS to Broca's area while engaged in a visual object-naming task. Navigated TMS was triggered 300 msec after picture presentation. The modified patterned nTMS protocol consists of 4 stimuli with an interstimulus interval of 6 msec; 8 or 16 of those bursts were repeated with a burst repetition rate of 12 Hz. Prior to mapping of Broca's area, the primary motor cortices (M1) for hand and laryngeal muscles were mapped. The Euclidian distance on MRI was measured between cortical points eliciting transient language disruptions and M1 for the laryngeal muscle. Results On stimulating Broca's area, transient language disruptions were induced in all subjects. The mean Euclidian distance between cortical spots inducing transient language disruptions and M1 for the laryngeal muscle was 17.23 ± 4.73 mm. Conclusions The stimulation paradigm with the modified patterned nTMS protocol was shown to be promising and might gain more widespread use in speech localization in clinical and research applications.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3