Machine learning to predict passenger mortality and hospital length of stay following motor vehicle collision

Author:

Kolcun John Paul G.1,Covello Brian2,Gernsback Joanna E.3,Cajigas Iahn2,Jagid Jonathan R.2

Affiliation:

1. Department of Neurological Surgery, Rush University Medical Center, Chicago, Illinois;

2. Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida; and

3. Department of Neurosurgery, Oklahoma University, Oklahoma City, Oklahoma

Abstract

OBJECTIVE Motor vehicle collisions (MVCs) account for 1.35 million deaths and cost $518 billion US dollars each year worldwide, disproportionately affecting young patients and low-income nations. The ability to successfully anticipate clinical outcomes will help physicians form effective management strategies and counsel families with greater accuracy. The authors aimed to train several classifiers, including a neural network model, to accurately predict MVC outcomes. METHODS A prospectively maintained database at a single institution’s level I trauma center was queried to identify all patients involved in MVCs over a 20-year period, generating a final study sample of 16,287 patients from 1998 to 2017. Patients were categorized by in-hospital mortality (during admission) and length of stay (LOS), if admitted. All models included age (years), Glasgow Coma Scale (GCS) score, and Injury Severity Score (ISS). The in-hospital mortality and hospital LOS models further included time to admission. RESULTS After comparing a variety of machine learning classifiers, a neural network most effectively predicted the target features. In isolated testing phases, the neural network models returned reliable, highly accurate predictions: the in-hospital mortality model performed with 92% sensitivity, 90% specificity, and a 0.98 area under the receiver operating characteristic curve (AUROC), and the LOS model performed with 2.23 days mean absolute error after optimization. CONCLUSIONS The neural network models in this study predicted mortality and hospital LOS with high accuracy from the relatively few clinical variables available in real time. Multicenter prospective validation is ultimately required to assess the generalizability of these findings. These next steps are currently in preparation.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Neurology (clinical),General Medicine,Surgery

Reference16 articles.

1. Economics of global burden of road traffic injuries and their relationship with health system variables;Dalal K,2013

2. Centers for Disease Control and Prevention (CDC). Motor-vehicle safety: a 20th century public health achievement,1999

3. Global Status Report on Road Safety 2018,2018

4. Changing spectrum of traumatic head injuries: Demographics and outcome analysis in a tertiary care referral center;Junaid M,2016

5. Rating the severity of tissue damage. I. The abbreviated scale,1971

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3