Feasibility of postoperative diffusion-weighted imaging to assess representations of spinal cord microstructure in cervical spondylotic myelopathy

Author:

Zhang Justin K.12,Javeed Saad1,Greenberg Jacob K.1,Botterbush Kathleen S.1,Benedict Braeden1,Blum Jacob1,Dibble Christopher F.1,Sun Peng3,Song Sheng-Kwei1,Ray Wilson Z.1

Affiliation:

1. Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri;

2. Department of Neurological Surgery, University of Utah, Salt Lake City, Utah; and

3. Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas

Abstract

OBJECTIVE Diffusion basis spectrum imaging (DBSI) has shown promise in evaluating cervical spinal cord structural changes in patients with cervical spondylotic myelopathy (CSM). DBSI may also be valuable in the postoperative setting by serially tracking spinal cord microstructural changes following decompressive cervical spine surgery. Currently, there is a paucity of studies investigating this topic, likely because of challenges in resolving signal distortions from spinal instrumentation. Therefore, the objective of this study was to assess the feasibility of DBSI metrics extracted from the C3 spinal level to evaluate CSM patients postoperatively. METHODS Fifty CSM patients and 20 healthy controls were enrolled in a single-center prospective study between 2018 and 2020. All patients and healthy controls underwent preoperative and postoperative diffusion-weighted MRI (dMRI) at a 2-year follow-up. All CSM patients underwent decompressive cervical surgery. The modified Japanese Orthopaedic Association (mJOA) score was used to categorize CSM patients as having mild, moderate, or severe myelopathy. DBSI metrics were extracted from the C3 spinal cord level to minimize image artifact and reduce partial volume effects. DBSI anisotropic tensors evaluated white matter tracts through fractional anisotropy, axial diffusivity, radial diffusivity, and fiber fraction. DBSI isotropic tensors assessed extra-axonal pathology through restricted and nonrestricted fractions. RESULTS Of the 50 CSM patients, both baseline and postoperative dMR images with sufficient quality for analysis were obtained in 27 patients. These included 15 patients with mild CSM (mJOA scores 15–17), 7 with moderate CSM (scores 12–14), and 5 with severe CSM (scores 0–11), who were followed up for a mean of 23.5 (SD 4.1, range 11–31) months. All preoperative C3-level DBSI measures were significantly different between CSM patients and healthy controls (p < 0.05), except DBSI fractional anisotropy (p = 0.31). At the 2-year follow-up, the same significance pattern was found between CSM patients and healthy controls, except DBSI radial diffusivity was no longer statistically significant (p = 0.75). When assessing change (i.e., postoperative − preoperative values) in C3-level DBSI measures, CSM patients exhibited significant decreases in DBSI radial diffusivity (p = 0.02), suggesting improvement in myelin integrity (i.e., remyelination) at the 2-year follow-up. Among healthy controls, there was no significant difference in DBSI metrics over time. CONCLUSIONS DBSI metrics derived from dMRI at the C3 spinal level can be used to provide meaningful insights into representations of the spinal cord microstructure of CSM patients at baseline and 2-year follow-up. DBSI may have the potential to characterize white matter tract recovery and inform outcomes following decompressive cervical surgery for CSM.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Neurology (clinical),General Medicine,Surgery

Reference41 articles.

1. Degenerative cervical spondylosis;Theodore N,2020

2. A clinical practice guideline for the management of patients with degenerative cervical myelopathy: recommendations for patients with mild, moderate, and severe disease and nonmyelopathic patients with evidence of cord compression;Fehlings MG,2017

3. Diffusion basis spectrum imaging identifies clinically relevant disease phenotypes of cervical spondylotic myelopathy;Zhang JK,2023

4. "A new imaging modality to non-invasively assess multiple sclerosis pathology.";Cross AH,2017

5. Translating state-of-the-art spinal cord MRI techniques to clinical use: a systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI;Martin AR,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3