Author:
Eide Per Kristian,Sorteberg Wilhelm
Abstract
Object
In this study, the authors compare simultaneous measurements of static and pulsatile pressure parameters in the epidural space and brain parenchyma of hydrocephalic patients.
Methods
Simultaneous intracranial pressure (ICP) signals from the epidural space (ICPEPI) and the brain parenchyma (ICPPAR) were compared in 12 patients undergoing continuous ICP monitoring as part of their diagnostic workup for hydrocephalus. The static ICP was characterized by mean ICP and the frequency of B waves quantified in the time domain, while the pulsatile ICP was determined from the cardiac beat–induced single ICP waves and expressed by the ICP pulse pressure amplitude (dP) and latency (dT; that is, rise time).
Results
The 12 patients underwent a median of 22.5 hours (range 5.9–24.8 hours) of ICP monitoring. Considering the total recording period of each patient, the mean ICP (static ICP) differed between the 2 compartments by ≥ 5 mm Hg in 8 patients (67%) and by ≥ 10 mm Hg in 4 patients (33%). In contrast, for every patient the ICP pulse pressure readings from the 2 compartments showed near-identical results. Consequently, when sorting patients to shunt/no shunt treatment according to pulsatile ICP values, selection was independent of sensor placement. The frequency of B waves also compared well between the 2 compartments.
Conclusions
The pulsatile ICP is measured with equal confidence from the ICPEPI and ICPPAR signals. When using the pulsatile ICP for evaluation of hydrocephalic patients, valid measurements may thus be obtained from pressure monitoring in the epidural space. Recorded differences in the mean ICP between the epidural space and the brain parenchyma are best explained by differences in the zero setting of different sensors.
Publisher
Journal of Neurosurgery Publishing Group (JNSPG)
Subject
Genetics,Animal Science and Zoology
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献