Quantification of tumor response of cystic vestibular schwannoma to Gamma Knife radiosurgery by using artificial intelligence

Author:

Huang Chih-Ying1,Peng Syu-Jyun2,Wu Hsiu-Mei34,Yang Huai-Che13,Chen Ching-Jen5,Wang Mao-Che36,Hu Yong-Sin34,Chen Yu-Wei14,Lin Chung-Jung34,Guo Wan-Yuo34,Pan David Hung-Chi17,Chung Wen-Yuh13,Lee Cheng-Chia138

Affiliation:

1. Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital;

2. Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University;

3. School of Medicine, National Yang Ming Chiao Tung University, Taipei;

4. Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan;

5. Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia;

6. Department of Otolaryngology–Head and Neck Surgery, Taipei Veterans General Hospital;

7. Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University; and

8. Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan

Abstract

OBJECTIVE Gamma Knife radiosurgery (GKRS) is a common treatment modality for vestibular schwannoma (VS). The ability to predict treatment response is important in patient counseling and decision-making. The authors developed an algorithm that can automatically segment and differentiate cystic and solid tumor components of VS. They also investigated associations between the quantified radiological features of each component and tumor response after GKRS. METHODS This is a retrospective study comprising 323 patients with VS treated with GKRS. After preprocessing and generation of pretreatment T2-weighted (T2W)/T1-weighted with contrast (T1WC) images, the authors segmented VSs into cystic and solid components by using fuzzy C-means clustering. Quantitative radiological features of the entire tumor and its cystic and solid components were extracted. Linear regression models were implemented to correlate clinical variables and radiological features with the specific growth rate (SGR) of VS after GKRS. RESULTS A multivariable linear regression model of radiological features of the entire tumor demonstrated that a higher tumor mean signal intensity (SI) on T2W/T1WC images (p < 0.001) was associated with a lower SGR after GKRS. Similarly, a multivariable linear regression model using radiological features of cystic and solid tumor components demonstrated that a higher solid component mean SI (p = 0.039) and a higher cystic component mean SI (p = 0.004) on T2W/T1WC images were associated with a lower SGR after GKRS. A larger cystic component proportion (p = 0.085) was associated with a trend toward a lower SGR after GKRS. CONCLUSIONS Radiological features of VSs on pretreatment MRI that were quantified using fuzzy C-means were associated with tumor response after GKRS. Tumors with a higher tumor mean SI, a higher solid component mean SI, and a higher cystic component mean SI on T2W/T1WC images were more likely to regress in volume after GKRS. Those with a larger cystic component proportion also trended toward regression after GKRS. Further refinement of the algorithm may allow direct prediction of tumor response.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3