Affiliation:
1. Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
2. Department of Neurological Surgery, University of California, Irvine, California; and
Abstract
Laser interstitial thermal therapy (LITT) is a minimally invasive procedure used to treat a variety of intracranial lesions. Utilization of robotic assistance with stereotactic procedures has gained attention due to potential for advantages over conventional techniques. The authors report the first case in which robot-assisted MRI-guided LITT was used to treat radiation necrosis in the posterior fossa, specifically within the cerebellar peduncle. The use of a stereotactic robot allowed the surgeon to perform LITT using a trajectory that would be extremely difficult with conventional arc-based techniques.
A 60-year-old man presented with facial weakness and brainstem symptoms consistent with radiation necrosis. He had a history of anaplastic astrocytoma that was treated with CyberKnife radiosurgery 1 year prior to presentation, and he did well for 11 months until his symptoms recurred. The location and form of the lesion precluded excision but made the patient a suitable candidate for LITT. The location and configuration of the lesion required a trajectory for LITT that was too low for arc-based stereotactic navigation, and thus the ROSA robot (Medtech) was used. Using preoperative MRI acquisitions, the lesion in the posterior fossa was targeted. Bone fiducials were used to improve accuracy in registration, and the authors obtained an intraoperative CT image that was then fused with the MR image by the ROSA robot. They placed the laser applicator and then ablated the lesion under real-time MR thermometry. There were no complications, and the patient tolerated the procedure well. Postoperative 2-month MRI showed complete resolution of the lesion, and the patient had some improvement in symptoms.
Publisher
Journal of Neurosurgery Publishing Group (JNSPG)
Subject
Neurology (clinical),General Medicine,Surgery
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献