Fully automatic brain tumor segmentation for 3D evaluation in augmented reality

Author:

Fick Tim1,van Doormaal Jesse A. M.2,Tosic Lazar3,van Zoest Renate J.4,Meulstee Jene W.1,Hoving Eelco W.12,van Doormaal Tristan P. C.23

Affiliation:

1. Department of Neuro-oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands;

2. Department of Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands;

3. Department of Neurosurgery, University Hospital of Zürich, Zürich, Switzerland; and

4. Department of Neurology and Neurosurgery, Curaçao Medical Center, Willemstad, Curaçao

Abstract

OBJECTIVE For currently available augmented reality workflows, 3D models need to be created with manual or semiautomatic segmentation, which is a time-consuming process. The authors created an automatic segmentation algorithm that generates 3D models of skin, brain, ventricles, and contrast-enhancing tumor from a single T1-weighted MR sequence and embedded this model into an automatic workflow for 3D evaluation of anatomical structures with augmented reality in a cloud environment. In this study, the authors validate the accuracy and efficiency of this automatic segmentation algorithm for brain tumors and compared it with a manually segmented ground truth set. METHODS Fifty contrast-enhanced T1-weighted sequences of patients with contrast-enhancing lesions measuring at least 5 cm3 were included. All slices of the ground truth set were manually segmented. The same scans were subsequently run in the cloud environment for automatic segmentation. Segmentation times were recorded. The accuracy of the algorithm was compared with that of manual segmentation and evaluated in terms of Sørensen-Dice similarity coefficient (DSC), average symmetric surface distance (ASSD), and 95th percentile of Hausdorff distance (HD95). RESULTS The mean ± SD computation time of the automatic segmentation algorithm was 753 ± 128 seconds. The mean ± SD DSC was 0.868 ± 0.07, ASSD was 1.31 ± 0.63 mm, and HD95 was 4.80 ± 3.18 mm. Meningioma (mean 0.89 and median 0.92) showed greater DSC than metastasis (mean 0.84 and median 0.85). Automatic segmentation had greater accuracy for measuring DSC (mean 0.86 and median 0.87) and HD95 (mean 3.62 mm and median 3.11 mm) of supratentorial metastasis than those of infratentorial metastasis (mean 0.82 and median 0.81 for DSC; mean 5.26 mm and median 4.72 mm for HD95). CONCLUSIONS The automatic cloud-based segmentation algorithm is reliable, accurate, and fast enough to aid neurosurgeons in everyday clinical practice by providing 3D augmented reality visualization of contrast-enhancing intracranial lesions measuring at least 5 cm3. The next steps involve incorporation of other sequences and improving accuracy with 3D fine-tuning in order to expand the scope of augmented reality workflow.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Neurology (clinical),General Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3