Brain repair by hematopoietic growth factors in the subacute phase of traumatic brain injury

Author:

Toshkezi Gentian,Kyle Michele,Longo Sharon L.,Chin Lawrence S.,Zhao Li-Ru

Abstract

OBJECTIVETraumatic brain injury (TBI) is a major cause of long-term disability and death in young adults. The lack of pharmaceutical therapy for post–acute TBI recovery remains a crucial medical challenge. Stem cell factor (SCF) and granulocyte colony–stimulating factor (G-CSF), which are 2 key hematopoietic growth factors, have shown neuroprotective and neurorestorative effects in experimental stroke. The objective of this study was to determine the therapeutic efficacy of combined treatment (SCF + G-CSF) in subacute TBI.METHODSYoung-adult male C57BL mice were subject to TBI in the cortex of the right hemisphere. After TBI induction, mice were randomly divided into 2 groups: a vehicle control group and an SCF + G-CSF treatment group. Mice without TBI served as sham operative controls. Treatment was initiated 2 weeks after TBI induction. SCF (200 μg/kg) and G-CSF (50 μg/kg) or an equal volume of vehicle solution was subcutaneously injected daily for 7 days. A battery of neurobehavioral tests for evaluation of memory and cognitive function (water maze and novel object recognition tests), anxiety (elevated plus maze test), and motor function (Rota-Rod test) was performed during the period of 2–9 weeks after treatment. Neurodegeneration and dendritic density in both hemispheres were determined through histochemistry and immunohistochemistry at 11 weeks posttreatment.RESULTSWater maze testing showed that TBI-impaired spatial learning and memory was restored by SCF + G-CSF treatment. The findings from the elevated plus maze tests revealed that SCF + G-CSF treatment recovered TBI-caused anxiety and risk-taking behavior. There were no significant differences between the treated and nontreated TBI mice in both the Rota-Rod test and novel object recognition test. In the brain sections, the authors observed that widespread degenerating neurons were significantly increased in both hemispheres in the TBI-vehicle control mice. TBI-induced increases in neurodegeneration were significantly reduced by SCF + G-CSF treatment in the contralateral hemisphere, making it no different from that of the sham controls. Dendritic density in the frontal cortex of the contralateral hemisphere was significantly reduced in the TBI-vehicle control mice, whereas SCF + G-CSF–treated TBI mice showed significant increases of the dendritic density in the same brain region. SCF + G-CSF–treated TBI mice also showed a trend toward increasing dendritic density in the contralateral hippocampus.CONCLUSIONSSCF + G-CSF treatment in the subacute phase of TBI restored TBI-impaired spatial learning and memory, prevented posttraumatic anxiety and risk-taking behavior, inhibited TBI-induced neurodegeneration, and enhanced neural network remodeling. These findings suggest the therapeutic potential of hematopoietic growth factors for brain repair in the subacute phase of TBI.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3