Optimum degree of hemodilution for brain protection in a canine model of focal cerebral ischemia

Author:

Lee Sun Ho,Heros Roberto C.,Mullan John C.,Korosue Kazuyoshi

Abstract

✓ The ability of hemodilution to lower blood viscosity and increase cerebral blood flow has been proven experimentally; however, the optimum hematocrit for maximum oxygen delivery to ischemic brain tissue is not known, and a study was designed to determine this. Fifty dogs were selected for inclusion in the study using criteria based on changes in somatosensory evoked potentials at the time of arterial occlusion, which were found in a previous study to predict the development of a moderate infarction of relatively constant size. Infarctions were induced by permanent occlusion of the left middle cerebral artery and the azygous anterior cerebral artery. The animals selected for inclusion were divided into five groups of 10 dogs each: 1) a control group; 2) a group with 25% hematocrit; 3) a group with 30% hematocrit; 4) a group with 35% hematocrit; and 5) a group with 40% hematocrit. Isovolemic hemodilution was accomplished 1 hour after occlusion of vessels using dextran infusion and blood withdrawal. The animals were sacrificed after 6 days and infarction volume was determined from fluorescein-stained sections. Statistical analysis was performed using Student's t-test and one-way analysis of variance. Mean infarction volume for each group, expressed as a percentage of total hemispheric volume ± 1 standard error of the mean, was 28.3% ± 2.8% for the control group, 33.6% ± 3.4% for the 25% hematocrit group, 17.1% ± 2.2% for the 30% hematocrit group, 29.2% ± 4.3% for the 35% hematocrit group, and 29.9% ± 2.1% for the 40% hematocrit group. The 30% hematocrit group showed the smallest average infarction size and this size differed significantly (p = 0.02) from the average infarction size in the control animals. These results show that, in this model of focal ischemia, a hematocrit of approximately 30% is optimum for protecting the brain.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3