The effect of irradiation on expression of HLA class I antigens in human brain tumors in culture

Author:

Klein Baruch,Loven David,Lurie Hedwig,Rakowsky Erica,Nyska Abram,Levin Israel,Klein Tirza

Abstract

✓ The immunosuppressive effects of irradiation are well known; however, under certain circumstances irradiation also augments the local immune response by as yet undefined mechanisms. Because of the importance of HLA class I antigen in immune regulation and the fact that killing of tumor cells by cytotoxic T cells is HLA antigen-restricted, the authors studied HLA class I antigen expression in eight glioblastomas multiforme, four meningiomas, and four medulloblastomas. Twenty fragments of each tumor specimen were placed in short-term cultures immediately after resection. For each tumor, control Sample 1 was not irradiated, Sample 2 was irradiated on Day 1, and two groups of the remaining pieces of each tumor (specimens 3 to 10) were irradiated on two consecutive days. Escalating radiation doses were given, starting at 200 cGy/day for Sample 2 up to 1000 cGy/day for Sample 10. The total dose range was 200 to 2000 cGy. Corresponding nonirradiated tumor fragments served as controls. Four hours after irradiation, each sample was processed and stained for HLA class I antigen using the immunoperoxidase technique. The tumor cells were intensely stained in nonirradiated glioblastomas and meningiomas, whereas no staining was observed in medulloblastomas. In four of the eight glioblastomas and in all four meningiomas, irradiation augmented HLA class I antigen expression compared to controls. This effect was dose-dependent and was maximum in the 1200 cGy-treated specimens. No change was observed in the other four glioblastomas or in the medulloblastomas. The data suggest that irradiation does not decrease and may even induce HLA class I antigen expression in some brain tumors. This may be one of the mechanisms by which immunotherapy operates after irradiation. Further studies are required to elucidate optimum radiation doses and fractionation as well as optimum timing of immunotherapy.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3