Author:
DaSilva Alexandre F. M.,Tuch David S.,Wiegell Mette R.,Hadjikhani Nouchine
Abstract
In this article, the authors review the application of diffusion tensor (DT) magnetic resonance (MR) imaging to demonstrate anatomical substructures that cannot be resolved by conventional structural imaging. They review the physical basis of DT imaging and provide illustrative anatomical examples. The DT imaging technique measures the self-diffusion, or random thermal motion, of the endogenous water in nerve tissue. Because of the preferred diffusion of water molecules along the nerve fiber direction, DT imaging can measure the orientation of the neural fiber structure within each voxel of the MR image. The fiber orientation information yielded by DT imaging provides a new contrast mechanism that can be used to resolve images of anatomical substructures that cannot otherwise be visualized using conventional structural imaging. The authors illustrate how DT imaging can resolve individual pathways in the brainstem as well as individual nuclei of the thalamus and conclude by describing potential applications in neurosurgery.
Publisher
Journal of Neurosurgery Publishing Group (JNSPG)
Subject
Clinical Neurology,General Medicine,Surgery
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献