An in vitro comparative study of conducting vessels and penetrating arterioles after experimental subarachnoid hemorrhage in the rabbit

Author:

Vollmer Dennis G.,Takayasu Masakazu,Dacey Ralph G.

Abstract

✓ The reactivity of rabbit basilar artery and penetrating arteriolar microvessels was studied in vitro using an isometric-tension measurement technique and an isolated perfused arteriole preparation, respectively. Comparisons were made between reactivities of normal vessels and those obtained from animals subjected to experimental subarachnoid hemorrhage (SAH) 3 days prior to examination. Subarachnoid hemorrhage produced significant increases in basilar artery contraction in response to increasing concentrations of serotonin (5-hydroxytryptamine) (10−9 to 10−5 M) and prostaglandin F (10−9 to 10−5 M) when compared to normal arteries. In addition, SAH attenuated the relaxing effect of acetylcholine following serotonin-induced contraction and of adenosine triphosphate after KCl-induced basilar artery contractions. In contrast to the changes observed in large arteries, cerebral microvessels did not demonstrate significant differences in spontaneous tone or in reactivity to a number of vasoactive stimuli including application of calcium, serotonin, and acetylcholine. On the other hand, small but significant changes in arteriolar responsiveness to changes in extraluminal pH and to application of KCl were noted. Findings from this study suggest that intracerebral resistance vessels of the cerebral microcirculation are not greatly affected by the presence of subarachnoid clot, in contrast to the large arteries in the basal subarachnoid space. The small changes that do occur are qualitatively different from those observed for large arteries. These findings are consistent with the observation of significant therapeutic benefit with the use of calcium channel blockers without changes in angiographically visible vasospasm in large vessels. It is likely, therefore, that calcium antagonists may act to decrease total cerebrovascular resistance at the level of the relatively unaffected microcirculation after SAH without changing large vessel diameter.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3