Author:
Berkman Richard A.,Clark W. Craig,Saxena Abha,Robertson James T.,Oldfield Edward H.,Ali Iqbal U.
Abstract
✓ Glioblastoma multiforme, the most common and most lethal primary central nervous system neoplasm, is noted for its phenotypic and biological heterogeneity. This heterogeneity may result from genetic alterations accumulated by a single transformed astrocyte as it evolves into a monoclonal tumor. Alternatively, it may be attributed to the presence of multiple biologically and genetically distinct astrocytic populations within a polyclonal tumor.
To address the issue of clonal composition of glioblastoma multiforme the authors used two independent approaches: analysis of X-chromosome inactivation and analysis of chromosomes 10 and 17 for tumor-specific somatic deletions. The analysis included 10 tumors from nine female patients with glioblastoma multiforme (eight primary and two recurrent tumors), who were heterozygous at either of two X-chromosome genes (hypoxanthine phosphoribosyl-transferase or phosphoglycerate kinase). Nine glioblastomas multiforme demonstrated a monoclonal pattern on X-chromosome analysis; contamination with normal tissue obscured the analysis in one tumor. Somatic deletions on chromosomes 10 and/or 17 occurred in nine tumors, supporting a monoclonal composition for these tumors.
These data suggest that glioblastoma multiforme is a monoclonal neoplasm, derived from the clonal expansion of a single transformed astrocyte that has, as a fundamental step in tumorigenesis, sustained a critical genetic alteration on chromosome 10 and/or 17.
Publisher
Journal of Neurosurgery Publishing Group (JNSPG)
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献