Effects of vasopressin and oxytocin on canine cerebral circulation in vivo

Author:

Suzuki Yoshio,Satoh Shin-ichi,Kimura Masaaki,Oyama Hirofumi,Asano Toshio,Shibuya Masato,Sugita Kenichiro

Abstract

In vivo experiments on the vasoactive effects of vasopressin and oxytocin on cerebral circulation were carried out in anesthetized dogs, using an electromagnetic flowmeter to measure vertebral blood flow and angiography to measure the internal diameter of the basilar artery. Direct bolus infusion of 1 pmol to 1 nmol of vasopressin or 10 pmol to 10 nmol of oxytocin into a femoral-vertebral artery shunt produced a dose-dependent decrease in vertebral artery blood flow without significantly affecting mean arterial blood pressure. Vasopressin was more potent than endothelin and neuropeptide Y, which have also been demonstrated to induce long-lasting decreases in vertebral artery blood flow. However, direct bolus infusion of vasopressin (100 pmol and 1 nmol) or oxytocin (1 nmol and 10 nmol) into the vertebral artery dilated major vessels including the vertebral, anterior spinal, and basilar arteries, as well as the circle of Willis and its main branches, while endothelin (1 nmol) and neuropeptide Y (5 nmol) caused no change in the diameters of major cerebral arteries. The V1 antagonist d(CH2)5tyrosine(methyl) arginine vasopressin suppressed the effects of both vasopressin and oxytocin. Vasopressin was over 10 times as potent as oxytocin in both assays. The vasodilatory effect of vasopressin, which may be mediated by an endothelium-dependent mechanism, was functionally damaged in dogs after experimental subarachnoid hemorrhage. These data suggest regional differences in the sensitivity and responsiveness of vasculature to vasopressin and oxytocin, and specifically that both peptides act through V1 receptors to decrease the resistance of large vessels and increase the resistance of small vessels.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3