Improvement in neurological outcome and abolition of cerebrovascular endothelin B and 5-hydroxytryptamine 1B receptor upregulation through mitogen-activated protein kinase kinase 1/2 inhibition after subarachnoid hemorrhage in rats

Author:

Larsen Carl Christian1,Povlsen Gro Klitgaard2,Rasmussen Marianne Nelly Paola2,Edvinsson Lars2

Affiliation:

1. Departments of Neurosurgery and

2. Clinical Experimental Research, Glostrup University Hospital, Glostrup, Denmark

Abstract

Object Delayed cerebral ischemia after subarachnoid hemorrhage (SAH) remains a major cause of death and disability. It has been hypothesized that cerebrovascular upregulation of vasoconstrictor receptors is a key step in the development of delayed cerebral ischemia. Upregulation of endothelin-B (ETB) and 5-hydroxytryptamine 1B (5-HT1B) receptors has been demonstrated in cerebral artery smooth muscles in the delayed ischemic phase after experimental SAH, and intracellular signaling via the mitogen-activated protein kinase kinase (MEK)–extracellular signal-regulated kinase 1/2 pathway has been shown to be involved in this upregulation. The aim in the present study was to determine whether treatment with the MEK1/2 inhibitor U0126 can prevent cerebrovascular receptor upregulation and improve functional outcome after experimental SAH in rats. Methods Subarachnoid hemorrhage was induced in male Sprague-Dawley rats by the injection of 250 μl of autologous blood into the basal cisterns. Either U0126 or vehicle was intracisternally administered at 6, 12, 24, and 36 hours after SAH. Smooth muscle ETB and 5-HT1B receptor upregulation was studied in isolated cerebral artery segments through immunohistochemical and myographic studies of contractile responses to receptor-specific agonists. Gross sensorimotor function in the rats after SAH was assessed using a rotating pole test. Results Contractile concentration-response curves for middle cerebral artery (MCA) and basilar artery (BA) segments to endothelin-1 (ET-1) and 5-carboxamidotryptamine (5-CT) were shifted leftward for SAH-induced compared with shamoperated rats due to enhanced contractile responses to individual doses of the agonists (for example, contractile responses of the BA to 3 × 10−10 M of ET-1 and 3 × 10−7 M of 5-CT were 9.98 ± 5.01% and 16.75 ± 3.62% of the maximal contractile capacity, respectively, in sham-operated rats and 62.78 ± 9.9% and 45.44 ± 10.62%, respectively, in SAH-induced rats). In vivo treatment with 0.19 μg/kg U0126 normalized responses in the SAH-induced rats to levels in the sham-operated rats. Protein expression of ETB and 5-HT1B receptors in cerebrovascular smooth muscles from SAH-induced rats was increased to 175 ± 33.17% and 167.7 ± 24.74%, respectively, of the levels in sham-operated rats. Endothelin-B and 5-HT1B expression levels in U0126-treated SAH-induced rats were at the levels in sham-operated rats (101.9 ± 13.38% and 91.44 ± 16.75%, respectively). In a rotating pole test used to assess gross sensorimotor function on the 2nd day after surgery, sham-operated rats achieved an average score of 5.37 ± 0.23, SAH-induced rats scored 3.35 ± 0.67, and SAH-induced U0126-treated rats scored 5.00 ± 0.4. Conclusions The authors demonstrated that experimental SAH induces upregulation of ETB and 5-HT1B receptors in cerebrovascular smooth muscles and that treatment with the MEK1/2 inhibitor U0126 abolishes this receptor upregulation. They also demonstrated that experimental SAH results in sensorimotor deficits as assessed by a rotating pole test. These deficits were alleviated by U0126 treatment, suggesting that cerebrovascular receptor upregulation is critical for the functional outcome of delayed cerebral ischemia. The authors suggest that inhibition of MEK1/2 may be a promising new SAH treatment strategy.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3