The kallikrein-kinin system as mediator in vasogenic brain edema

Author:

Unterberg Andreas,Baethmann Alexander J.

Abstract

✓ Plasma and bradykinin were perfused into the ventricular system of mongrel dogs to investigate whether either or both induce brain edema. Formation of cerebral edema was determined by measurement of cerebral water and electrolytes in periventricular white matter, cerebral cortex, and caudate nucleus. The response of cerebral tissue to exposure to bradykinin or to plasma, as a carrier of kininogens, was analyzed by assessment of the perfusate composition after ventricle passage. The authors report that cerebral administration of bradykinin induces cerebral edema. Ventricular perfusion with plasma also led to an increase of cerebral water content which was restricted to the white matter, but involved all brain tissue areas, if bradykinin was used. Ventricular perfusion with plasma was associated with consumption of the kinin precursor (kininogens) indicative of formation of kinins. Significant consumption of the precursor was found in five out of nine animals subjected to plasma perfusion of the ventricular system. In these animals a close correlation between the increase of white matter water content and kininogen-consumption as a measure of kinin-formation was obtained. Marked kinin-degrading activity was observed during ventricular perfusion with bradykinin as concluded from a considerable decrease of bradykinin concentration in the cisternal effluent compared to the inflowing perfusate concentration. Ventricular perfusion with plasma was associated with a decrease of K+ clearance capacity with continued duration, and in two animals with a release of glutamate into the plasma perfusate, suggesting an involvement of cytotoxic mechanisms. These findings provide support for the hypothesis of a mediator function of the kallikrein-kinin (KK) system in vasogenic brain edema. The next question that needs to be answered to complete the picture — does spontaneous activation of the KK system occur in conditions leading to vasogenic edema? — is studied in a subsequent report.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3