Encapsulated vascular endothelial growth factor—secreting cell grafts have neuroprotective and angiogenic effects on focal cerebral ischemia

Author:

Yano Akimasa,Shingo Tetsuro,Takeuchi Akira,Yasuhara Takao,Kobayashi Kazuki,Takahashi Kazuya,Muraoka Kenichiro,Matsui Toshihiro,Miyoshi Yasuyuki,Hamada Hirofumi,Date Isao

Abstract

Object The authors evaluated the neuroprotective and angiogenic effects of a continuous and low-dose infusion of vascular endothelial growth factor (VEGF)-165 on cerebral ischemia in rats. Methods The authors introduced VEGF complementary (c)DNA into baby hamster kidney (BHK) cells and established a cell line that produces human VEGF165 (BHK-VEGF). The BHK-VEGF cells and BHK cells that had been transfected with an expression vector that did not contain human VEGF165 cDNA (BHK-control) were encapsulated. Both capsules were implanted into rat striata. Six days after capsule implantation, the right middle cerebral artery (MCA) was occluded. Some animals were killed 24 hours after occlusion to measure the volume of the resulting infarct and to perform immunohistochemical studies. Other animals were used for subsequent behavioral studies 1, 7, and 14 days after MCA occlusion. The encapsulated BHK-VEGF cell grafts significantly reduced the volume of the infarct and the number of apoptotic cells in the penumbral area when compared with the effect of the BHK-control cell capsule. In addition, angiogenesis and gliogenesis significantly increased in the region around the capsule in animals that received BHK-VEGF cell capsules without an increase in focal cerebral blood flow; this did not occur in animals that received the BHK-control cell capsule. In behavioral studies rats that received the BHK-VEGF cell capsule displayed significant recovery while participating in the accelerating rotarod test after stroke. Conclusions Continuous intracerebral administration of low-dose VEGF165 through encapsulated grafts of VEGF-producing cells produces neuroprotective and angiogenic effects. These effects improve subsequent motor function.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3