Enhanced brain angiogenesis in chronic cerebral hypoperfusion after administration of plasmid human vascular endothelial growth factor in combination with indirect vasoreconstructive surgery

Author:

Kusaka Noboru,Sugiu Kenji,Tokunaga Koji,Katsumata Atsushi,Nishida Ayumi,Namba Katsunari,Hamada Hirofumi,Nakashima Hiroyuki,Date Isao

Abstract

Object. Vascular endothelial growth factor (VEGF) is a secreted mitogen associated with angiogenesis. The conceptual basis for therapeutic angiogenesis after plasmid human VEGF gene (phVEGF) transfer has been established in patients presenting with limb ischemia and myocardial infarction. The authors hypothesized that overexpression of VEGF using a gene transfer method combined with indirect vasoreconstruction might induce effective brain angiogenesis in chronic cerebral hypoperfusion, leading to prevention of ischemic attacks. Methods. A chronic cerebral hypoperfusion model induced by permanent ligation of both common carotid arteries in rats was used in this investigation. Seven days after induction of cerebral hypoperfusion, encephalomyosynangiosis (EMS) and phVEGF administration in the temporal muscle were performed. Fourteen days after treatment, the VEGF gene therapy group displayed numbers and areas of capillary vessels in temporal muscles that were 2.2 and 2.5 times greater, respectively, in comparison with the control group. In the brain, the number and area of capillary vessels in the group treated with the VEGF gene were 1.5 and 1.8 times greater, respectively, relative to the control group. Conclusions. In rat models of chronic cerebral hypoperfusion, administration of phVEGF combined with indirect vasoreconstructive surgery significantly increased capillary density in the brain. The authors' results indicate that administration of phVEGF may be an effective therapy in patients with chronic cerebral hypoperfusion, such as those with moyamoya disease.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3