Flow changes caused by the sequential placement of stents across the neck of sidewall cerebral aneurysms

Author:

Cantón Gádor,Levy David I.,Lasheras Juan C.,Nelson Peter K.

Abstract

Object. The goal of this study was to quantify the reduction in velocity, vorticity, and shear stresses resulting from the sequential placement of stents across the neck of sidewall cerebral aneurysms. Methods. A digital particle image velocimetry (DPIV) system was used to measure the pulsatile velocity field within a flexible silicone sidewall intracranial aneurysm model and at the aneurysm neck–parent artery interface in this model. The DPIV system is capable of providing an instantaneous, quantitative two-dimensional measurement of the velocity vector field of “blood” flow inside the aneurysm pouch and the parent vessel, and its changes at varying stages of the cardiac cycle. The corresponding vorticity and shear stress fields are then computed from the velocity field data. Three Neuroform stents (Boston Scientific/Target), each with a strut thickness between 60 and 65 µm, were subsequently placed across the neck of the aneurysm model and measurements were obtained after each stent had been placed. The authors measured a consistent decrease in the values of the maximal averaged velocity, vorticity, and shear stress after placing one, two, and three stents. Measurements of the circulation inside the sac demonstrated a systematic reduction in the strength of the vortex due to the stent placement. The decrease in the magnitude of the aforementioned quantities after the first stent was placed was remarkable. Placement of two or three stents led to a less significant reduction than placement of the first stent. Conclusions. The use of multiple flexible intravascular stents effectively reduces the strength of the vortex forming in an aneurysm sac and results in a decrease in the magnitude of stresses acting on the aneurysm wall.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3