Diffusion tensor analysis of peritumoral edema using lambda chart analysis indicative of the heterogeneity of the microstructure within edema

Author:

Morita Ken-ichi,Matsuzawa Hitoshi,Fujii Yukihiko,Tanaka Ryuichi,Kwee Ingrid L.,Nakada Tsutomu

Abstract

Object. Histopathological studies indicate that cerebral edema associated with tumors (peritumoral edema) does not represent a single pathophysiological or clinical entity. In this study the authors investigated peritumoral edema by performing lambda chart analysis (LCA), a noninvasive technique that can be used to make visible and analyze apparent water diffusivity in tissues in vivo, and assessed the utility of LCA in differentiating high-grade gliomas from nonglial tumors. Methods. The water diffusivity characteristics of peritumoral edema associated with four tumor groups—12 high-grade gliomas, five low-grade gliomas, 11 metastatic tumors, and 15 meningiomas—were assessed in 43 patients by performing magnetic resonance imaging with the aid of a 3-tesla magnetic resonance imaging system. In all tumor groups, peritumoral edema exhibited greater trace values and reduced anisotropy compared with normal white matter. Edema associated with high-grade gliomas had significantly higher trace values than edema associated with the other three tumor groups, although the anisotropic angles of those groups were comparable. Conclusions. Lambda chart analysis identified two distinct types of peritumoral edema: edema associated with high-grade gliomas and edema associated with low-grade gliomas or nonglial tumors. The apparent water diffusivity was significantly greater in high-grade gliomas, whereas the anisotropy in these lesions was comparable to that of edema in other tumors. These findings indicated that water movement in areas of edema, predominantly in the extracellular spaces, was less restricted in high-grade gliomas, a phenomenon that likely reflected the destruction of the extracellular matrix ultrastructure by malignant cell infiltration and consequently greater water diffusion. Although preliminary, this study indicates that LCA could be used as a clinical tool for differentiating high-grade gliomas and for evaluating the extent of cellular infiltration.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3