Vascular corrosion casts mirroring early morphological changes that lead to the formation of saccular cerebral aneurysm: an experimental study in rats

Author:

Jamous Mohammad A.,Nagahiro Shinji,Kitazato Keiko T.,Satoh Koichi,Satomi Junichiro

Abstract

Object. The formation of cerebral aneurysms involves complex processes and little is known about the mechanisms by which they originate, grow, and rupture. The purpose of this study was to identify early ultrastructural morphological changes that lead to the formation of experimental cerebral aneurysms. Methods. Twenty male Sprague—Dawley rats were subjected to cerebral aneurysm induction (renal hypertension and right common carotid artery ligation); 10 intact rats served as the control group. The animals were killed after 2 months, and a vascular corrosion cast of their cerebral arteries was prepared and screened for aneurysm development by using a scanning electron microscope. Sequential morphological changes observed at the cerebral artery bifurcation in response to hemodynamic shear stress included endothelial changes, intimal pad elevation, and saccular dilation. Endothelial cell changes were the first observed morphological changes; they were followed by various degrees of artery wall dilation. No aneurysmal changes developed in any of the control rats. Of the 20 surgically treated rats, 11 displayed aneurysmal changes. In five of these animals only changes in the endothelial cell imprints could be identified. In the other six rats morphological changes in endothelial cells were associated with different stages of aneurysmal dilation. Conclusions. This is the first study to demonstrate in vivo early morphological changes that lead to the formation of cerebral aneurysms. The morphological findings indicate the principal role of endothelial cells in the pathogenesis of cerebral aneurysms and suggest that hemodynamic shear stress and blood flow patterns may precipitate these early changes.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3