Critical roles of decompression in functional recovery of ex vivo spinal cord white matter

Author:

Ouyang Hui12,Galle Beth3,Li Jianming2,Nauman Eric23,Shi Riyi12

Affiliation:

1. Department of Basic Medical Sciences,

2. Weldon School of Biomedical Engineering, and

3. School of Mechanical Engineering, Purdue University, West Lafayette, Indiana

Abstract

Object The correlations between functional deficits, the magnitude of compression, and the role of sustained compression during traumatic spinal cord injury remain largely unknown. Thus, the functional outcome of this type of injury with or without surgical intervention is rather unpredictable. To elucidate how severity and duration of compression affect cord function, the authors have developed a method to study electrophysiological characteristics and axonal membrane damage in white matter from guinea pig spinal cord. Methods Ventral white matter strips isolated from adult guinea pigs were compressed by a compression rod at a level of either 60 or 80% and held briefly, for 30 minutes, or for 60 minutes. In half the experimental groups, a decompression phase consisting of probe withdrawal and 30 minutes of recovery was also applied. For all cord samples, functional response was continuously monitored through compound action potential (CAP) recording. In addition, axonal membrane damage was assessed by a horseradish peroxidase (HRP) exclusion assay. Results After 30 minutes of sustained compression at levels of 60 or 80%, a spinal cord decompression procedure caused a significant CAP recovery, with specimens reaching 97.5 ± 6.84% (p < 0.05) and 56.2 ± 6.14% (p < 0.05) of preinjury amplitude, respectively. After 60 minutes of compression, the amount of CAP recovery following the decompression stage was only 65.5 ± 9.33% for 60% compression (p < 0.05) and 29.8 ± 6.31% for 80% compression (p < 0.05). Unlike the CAP response, HRP uptake did not increase during sustained compression, and the data showed that HRP staining was primarily time dependent. Conclusions The degree of axonal membrane damage is not exacerbated during sustained compression. However, the electrical conductivity of the cord white matter weakens throughout the duration of compression. Therefore, decompression is a viable procedure for preservation of neurological function following compressive injury.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

General Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3