In vivo cerebral aneurysm models

Author:

Thompson John W.12,Elwardany Omar12,McCarthy David J.12,Sheinberg Dallas L.12,Alvarez Carlos M.12,Nada Ahmed12,Snelling Brian M.123,Chen Stephanie H.12,Sur Samir12,Starke Robert M.142

Affiliation:

1. Departments of Neurological Surgery and

2. The University of Miami Cerebrovascular Initiative, University of Miami; and

3. Marcus Neuroscience Institute, Boca Raton Regional Hospital, Boca Raton, Florida

4. Radiology, University of Miami;

Abstract

Cerebral aneurysm rupture is a devastating event resulting in subarachnoid hemorrhage and is associated with significant morbidity and death. Up to 50% of individuals do not survive aneurysm rupture, with the majority of survivors suffering some degree of neurological deficit. Therefore, prior to aneurysm rupture, a large number of diagnosed patients are treated either microsurgically via clipping or endovascularly to prevent aneurysm filling. With the advancement of endovascular surgical techniques and devices, endovascular treatment of cerebral aneurysms is becoming the first-line therapy at many hospitals. Despite this fact, a large number of endovascularly treated patients will have aneurysm recanalization and progression and will require retreatment. The lack of approved pharmacological interventions for cerebral aneurysms and the need for retreatment have led to a growing interest in understanding the molecular, cellular, and physiological determinants of cerebral aneurysm pathogenesis, maturation, and rupture. To this end, the use of animal cerebral aneurysm models has contributed significantly to our current understanding of cerebral aneurysm biology and to the development of and training in endovascular devices. This review summarizes the small and large animal models of cerebral aneurysm that are being used to explore the pathophysiology of cerebral aneurysms, as well as the development of novel endovascular devices for aneurysm treatment.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Neurology (clinical),General Medicine,Surgery

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3