Biomechanical evaluation of destabilization following minimally invasive decompression for lumbar spinal canal stenosis

Author:

Hasegawa Kazuhiro1,Kitahara Ko2,Shimoda Haruka1,Hara Toshiaki3

Affiliation:

1. Niigata Spine Surgery Center, Niigata;

2. Research Laboratory, Showa Ika Kohgyou Co. Ltd., Toyohashi; and

3. Niigata Institute of Technology, Kashiwazaki, Niigata, Japan

Abstract

Object This study aimed to clarify changes in segmental instability following a unilateral approach for microendoscopic posterior decompression and muscle-preserving interlaminar decompression compared with traditional procedures and destabilized models. Methods An ex vivo experiment was performed using 30 fresh frozen porcine functional spinal units (FSUs). Each intact specimen was initially tested for flexion-extension, lateral bending, and torsion up to 1.5° using a material testing system at an angular velocity of 0.1°/second under a preload of 70 N. Microendoscopic posterior decompression, muscle-preserving interlaminar decompression, bilateral medial facetectomy, left unilateral total facetectomy, and bilateral total facetectomy were then performed, followed by mechanical testing with the same loading conditions, in 6 randomized FSUs from each group. Stiffness and neutral zone were standardized by dividing the experimental values by the baseline values and were then compared among groups. Results Mean standardized stiffness values for all loading modes tended to decrease in the order of muscle-preserving interlaminar decompression, microendoscopic posterior decompression, bilateral medial facetectomy, left unilateral total facetectomy, and bilateral total facetectomy. In contrast, mean standardized neutral zone values tended to increase in the order of muscle-preserving interlaminar decompression, microendoscopic posterior decompression, bilateral medial facetectomy, left unilateral total facetectomy, and bilateral total facetectomy. In flexion, values for standardized stiffness following microendoscopic posterior decompression and muscle-preserving interlaminar decompression were higher and standardized neutral zone following microendoscopic posterior decompression and muscle-preserving interlaminar decompression were lower than the values following left unilateral total facetectomy and bilateral total facetectomy while there was no significant difference among bilateral medial facetectomy, left unilateral total facetectomy, and bilateral total facetectomy. Values of standardized stiffness and standardized neutral zone in left torsion following microendoscopic posterior decompression, muscle-preserving interlaminar decompression, and bilateral medial facetectomy were equally superior to values of the destabilization models (left unilateral total facetectomy and bilateral total facetectomy). Except for standardized stiffness in left bending, the values of the parameters for each bending tended to be the same as in the other loading modes. Conclusions The present biomechanical study showed that overall stability of the FSUs was maintained following microendoscopic posterior decompression, muscle-preserving interlaminar decompression, and bilateral medial facetectomy compared with the destabilization models of left unilateral total facetectomy or bilateral total facetectomy. Comparison of the postoperative stability following microendoscopic posterior decompression, muscle-preserving interlaminar decompression, and bilateral medial facetectomy revealed that muscle-preserving interlaminar decompression tended to be superior, followed by microendoscopic posterior decompression and bilateral medial facetectomy.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3