Hyperprolactinemia due to spontaneous intracranial hypotension

Author:

Schievink Wouter I.1,Nuño Miriam1,Rozen Todd D.2,Maya M. Marcel3,Mamelak Adam N.1,Carmichael John4,Bonert Vivien S.4

Affiliation:

1. Departments of Neurosurgery,

2. Department of Neurology, Geisinger Wyoming Valley Medical Center, Wilkes-Barre, Pennsylvania

3. Radiology, and

4. Pituitary Center, Cedars-Sinai Medical Center, Los Angeles, California; and

Abstract

OBJECT Spontaneous intracranial hypotension is an increasingly recognized cause of headaches. Pituitary enlargement and brain sagging are common findings on MRI in patients with this disorder. The authors therefore investigated pituitary function in patients with spontaneous intracranial hypotension. METHODS Pituitary hormones were measured in a group of 42 consecutive patients with spontaneous intracranial hypotension. For patients with hyperprolactinemia, prolactin levels also were measured following treatment. Magnetic resonance imaging was performed prior to and following treatment. RESULTS The study group consisted of 27 women and 15 men with a mean age at onset of symptoms of 52.2 ± 10.7 years (mean ± SD; range 17–72 years). Hyperprolactinemia was detected in 10 patients (24%), ranging from 16 ng/ml to 96.6 ng/ml in men (normal range 3–14.7 ng/ml) and from 31.3 ng/ml to 102.5 ng/ml in women (normal range 3.8–23.2 ng/ml). In a multivariate analysis, only brain sagging on MRI was associated with hyperprolactinemia. Brain sagging was present in 60% of patients with hyperprolactinemia and in 19% of patients with normal prolactin levels (p = 0.02). Following successful treatment of the spontaneous intracranial hypotension, hyperprolactinemia resolved, along with normalization of brain MRI findings in all 10 patients. CONCLUSIONS Spontaneous intracranial hypotension is a previously undescribed cause of hyperprolactinemia. Brain sagging causing distortion of the pituitary stalk (stalk effect) may be responsible for the hyperprolactinemia.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3