Functional magnetic resonance imaging and control over the biceps muscle after intercostal–musculocutaneous nerve transfer

Author:

Malessy Martijn J. A.,Bakker Dick,Dekker Ad J.,van Dijk J. Gert,Thomeer Ralph T. W. M.

Abstract

Object Recent progress in the understanding of cerebral plastic changes that occur after an intercostal nerve (ICN)–musculocutaneous nerve (MCN) transfer motivated a study with functional magnetic resonance (fMR) imaging to map reorganization in the primary motor cortex. Methods Eleven patients with traumatic root avulsions of the brachial plexus were studied. Nine patients underwent ICN–MCN transfer to restore biceps function and two patients were studied prior to surgery. The biceps muscle recovered well in seven patients who had undergone surgery and remained paralytic in the other two patients. Maps of neural activity within the motor cortex were generated for both arms in each patient by using fMR imaging, and the active pixels were counted. The motor task consisted of biceps muscle contraction. Patients with a paralytic biceps were asked to contract this muscle virtually. The location and intensity of motor activation of the seven surgically treated arms that required good biceps muscle function were compared with those of the four arms with a paralytic biceps and with activity obtained in the contralateral hemisphere regulating the control arms. Activity could be induced in the seven surgically treated patients whose biceps muscles had regained function and was localized within the primary motor area. In contrast, activity could not be induced in the four patients whose biceps muscles were paralytic. Neither the number of active pixels nor the mean value of their activations differed between the seven arms with good biceps function and control arms. The weighted center of gravity of the distribution of activity also did not appear to differ. Conclusions Reactivation of the neural input activity for volitional biceps control after ICN–MCN transfer, as reflected on fMR images, is induced by successful biceps muscle reinnervation. In addition, the restored input activity does not differ from the normal activity regulating biceps contraction and, therefore, has MCN acceptor qualities. After ICN–MCN transfer, cerebral activity cannot reach the biceps muscle following the normal nervous system pathway. The presence of a common input response between corticospinal neurons of the ICN donor and the MCN acceptor seems crucial to obtain a functional result after transfer. It may even be the case that a common input response between donor and acceptor needs to be present in all types of nerve transfer to become functionally effective.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Neurology (clinical),General Medicine,Surgery

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3