Real-time control of a prosthetic hand using human electrocorticography signals

Author:

Yanagisawa Takufumi12,Hirata Masayuki1,Saitoh Youichi1,Goto Tetsu1,Kishima Haruhiko1,Fukuma Ryohei23,Yokoi Hiroshi4,Kamitani Yukiyasu23,Yoshimine Toshiki1

Affiliation:

1. Department of Neurosurgery, Osaka University Medical School, Osaka;

2. ATR Computational Neuroscience Laboratories, Kyoto;

3. Nara Institute of Science and Technology; and

4. Department of Precision Engineering, University of Tokyo, Japan

Abstract

Object A brain-machine interface (BMI) offers patients with severe motor disabilities greater independence by controlling external devices such as prosthetic arms. Among the available signal sources for the BMI, electrocorticography (ECoG) provides a clinically feasible signal with long-term stability and low clinical risk. Although ECoG signals have been used to infer arm movements, no study has examined its use to control a prosthetic arm in real time. The authors present an integrated BMI system for the control of a prosthetic hand using ECoG signals in a patient who had suffered a stroke. This system used the power modulations of the ECoG signal that are characteristic during movements of the patient's hand and enabled control of the prosthetic hand with movements that mimicked the patient's hand movements. Methods A poststroke patient with subdural electrodes placed over his sensorimotor cortex performed 3 types of simple hand movements following a sound cue (calibration period). Time-frequency analysis was performed with the ECoG signals to select 3 frequency bands (1–8, 25–40, and 80–150 Hz) that revealed characteristic power modulation during the movements. Using these selected features, 2 classifiers (decoders) were trained to predict the movement state—that is, whether the patient was moving his hand or not—and the movement type based on a linear support vector machine. The decoding accuracy was compared among the 3 frequency bands to identify the most informative features. With the trained decoders, novel ECoG signals were decoded online while the patient performed the same task without cues (free-run period). According to the results of the real-time decoding, the prosthetic hand mimicked the patient's hand movements. Results Offline cross-validation analysis of the ECoG data measured during the calibration period revealed that the state and movement type of the patient's hand were predicted with an accuracy of 79.6% (chance 50%) and 68.3% (chance 33.3%), respectively. Using the trained decoders, the onset of the hand movement was detected within 0.37 ± 0.29 seconds of the actual movement. At the detected onset timing, the type of movement was inferred with an accuracy of 69.2%. In the free-run period, the patient's hand movements were faithfully mimicked by the prosthetic hand in real time. Conclusions The present integrated BMI system successfully decoded the hand movements of a poststroke patient and controlled a prosthetic hand in real time. This success paves the way for the restoration of the patient's motor function using a prosthetic arm controlled by a BMI using ECoG signals.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

Cited by 154 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MOTOR IMAGERY SIGNAL CLASSIFICATION FOR BRAIN–COMPUTER INTERFACE USING RideNN WITH HOLO-ENTROPY FEATURES;Biomedical Engineering: Applications, Basis and Communications;2024-07-03

2. A World Update of Progress in Lower Extremity Transplantation;Annals of Plastic Surgery;2024-07

3. A Review of Motor Brain-Computer Interfaces Using Intracranial Electroencephalography Based on Surface Electrodes and Depth Electrodes;IEEE Transactions on Neural Systems and Rehabilitation Engineering;2024

4. A Study to Improve Operating Accuracy of Electric Prosthetic Hand Using Tactile Feature Sensing System;Journal of the Japan Society of Applied Electromagnetics and Mechanics;2024

5. Brain-Body Interfaces to Assist and Restore Motor Functions in People with Paralysis;SpringerBriefs in Electrical and Computer Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3