Author:
Jittapiromsak Pakrit,Deshmukh Pushpa,Nakaji Peter,Spetzler Robert F.,Preul Mark C.
Abstract
Object
The standard superior craniotomy approach through the orbital roof is obstructed by numerous muscles, nerves, and vessels. Accessing the medial intraconal space also involves considerable brain retraction. The authors present a modified approach through the frontal sinus that overcomes these limitations.
Methods
Seven fixed silicone-injected cadaveric specimens were dissected bilaterally. In addition to the superior orbital wall, the ethmoidal sinuses and medial orbital wall were removed. The anatomical relationships between the major neurovascular complexes in the medial intraconal space and the optic nerve were observed.
Results
Intraconally, working space was created both in a “superior window” between the superior oblique and levator palpebrae muscle and in a “medial window” between the superior oblique and medial rectus muscle. The superior window mainly created an ipsilateral trajectory to the deep target. The medial window, which created a contralateral trajectory, provided a more inferior view of the medial intraconal space. Removal of the medial orbital wall further widened the exposure obtained from the superior window. The combination of these working windows makes the medial surface of the optic nerve available for exploration from multiple angles. Most of the major neurovascular complexes of the posterior orbit can be retracted safely without impinging on the optic nerve.
Conclusions
This novel extradural transfrontoethmoidal approach affords a direct view to the medial posterior orbit without major conflicts with intraconal neurovascular structures and requires minimal brain manipulation. The approach appears to offer advantages for medially located intraconal lesions.
Publisher
Journal of Neurosurgery Publishing Group (JNSPG)
Subject
Genetics,Animal Science and Zoology