Murine spinal fusion induced by engineered mesenchymal stem cells that conditionally express bone morphogenetic protein—2

Author:

Hasharoni Amir,Zilberman Yoram,Turgeman Gadi,Helm Gregory A.,Liebergall Meir,Gazit Dan

Abstract

Object. The authors hypothesized that spinal fusion can be achieved and monitored by using cell-mediated gene therapy. Mesenchymal stem cells (MSCs) genetically engineered to express recombinant human bone morphogenetic protein—2 (rhBMP-2) conditionally, were implanted into the paraspinal muscles of mice to establish spinal fusion. The goal was to demonstrate an MSC-based gene therapy platform in which controlled gene expression is used to obtain spinal fusion in a murine model. Methods. Mesenchymal stem cells expressing the rhBMP-2 gene were injected into the paravertebral muscle in mice. Bone formation in the paraspinal region was longitudinally followed by performing micro—computerized tomography scanning, histological studies, and an analysis of osteocalcin expression to demonstrate the presence of engrafted engineered MSCs. The minimal period of rhBMP-2 expression by the engineered MSCs required to induce fusion was determined. The results of this study demonstrate that genetically engineered MSCs induce bone formation in areas adjacent to and touching the posterior elements of the spine. This newly formed bone fuses the spine, as demonstrated by radiological and histological studies. The authors demonstrate that injected cells induce active osteogenesis at the site of implantation for up to 4 weeks postinjection. They found that a 7-day induction of rhBMP-2 expression in genetically engineered MSCs was sufficient to form new bone tissue, although the quantity of this bone increased as longer expression periods were implemented. Conclusions. After their injection genetically engineered MSCs can efficiently form new bone in the paraspinal muscle of the mouse to obtain spinal fusion. The extent and quantity of this newly formed bone can be monitored by controlling the duration of rhBMP-2 gene expression.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

General Medicine

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3