Author:
Conrad Sabine,Schluesener Hermann J.,Adibzahdeh Mehdi,Schwab Jan M.
Abstract
Object. The glial scar composed of astrogliosis and extracellular matrix deposition represents a major impediment to axonal regeneration. The authors investigated the role of a novel profibrotic and angiogenic peptide connective tissue growth factor (CTGF [Hcs24/IGFBP-r2P]) in glial scar formation following spinal cord injury (SCI) in rats.
Methods. The effects of SCI on CTGF expression during glial scar maturation 1 day to 1 month post-SCI were investigated using fluorescein-activated cell sorter (FACS) immunohistochemical analysis; these findings were compared with those obtained in sham-operated (control) spinal cords.
The CTGF-positive cells accumulated at the spinal cord lesion site (p < 0.0001) corresponding to areas of glial scar formation. In the perilesional rim, CTGF expression was confined to invading vimentin-positive, glial fibrillary acidic protein (GFAP)—negative fibroblastoid cells, endothelial and smooth-muscle cells of laminin-positive vessels, and GFAP-positive reactive astrocytes. The CTGF-positive astrocytes coexpressed the activation-associated intermediate filaments nestin, vimentin (> 80%), and mesenchymal scar component fibronectin (50%).
Conclusions. The restricted accumulation of CTGF-reactive astrocytes and CTGF-positive fibroblastoid cells lining the laminin-positive basal neolamina suggests participation of these cells in scar formation. In addition, perilesional upregulation of endothelial and smooth-muscle CTGF expression points to a role in blood—brain barrier function modulating edema-induced secondary damage.
Publisher
Journal of Neurosurgery Publishing Group (JNSPG)
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献