Access to the brain parenchyma using endovascular techniques and a micro-working channel

Author:

Lundberg Johan12,Johansson Carina B.3,Jonsson Stefan4,Holmin Staffan12

Affiliation:

1. Department of Clinical Neuroscience, Karolinska Institutet;

2. Department of Neuroradiology, Karolinska University Hospital, Stockholm;

3. Department of Prosthodontics/Dental Materials, Science, Sahlgrenska Academy, Institute of Odontology, University of Gothenburg, Sweden; and

4. Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm, Sweden

Abstract

OBJECTIVE Several older studies report a low risk for parenchymal access to the CNS by surgical techniques. In more recent studies, including those with post-puncture CT scans, there are indications that the risk of bleeding might approach 8%. New therapies, such as those that use viral vectors, modified mRNA, or cell transplantation, will probably warrant more parenchymal access to the CNS. Other minimally invasive routes might then be tempting to explore. This study was designed in 2 parts to address the possibility of using the endovascular route. The first aim was to test the ability to create a parenchymal micro-working channel to the CNS in macaque monkeys through the vessel wall. Second, the biocompatibility of a device-associated, detached, distal securing plug that was made of nitinol was investigated in swine for 1 year. METHODS Trans-vessel wall intervention in the middle cerebral artery and associated cerebral parenchyma was performed in 4 rhesus macaque monkeys using a full clinical angiography suite. A contrast agent and methylene blue were injected to test the working channel and then detached at the distal end to act as a securing plug through the vessel wall. One-year follow-ups were also performed using angiography and histological analysis in 10 swine with 24 implants that were distributed in the external carotid artery tree. RESULTS The cerebral interventions were performed without acute bleeding. Both the contrast agent and methylene blue were infused into the brain parenchyma and subarachnoidal space via the endovascular micro-working channel (7 injections in 4 animals). In the 1-year follow-up period, the implant that was left in the external carotid vessel wall in the swine was covered by the endothelium, which was followed by dislodgement just outside the blood vessel with thin capsule formation. No stenosis in the artery was detected on 1-year angiography. The animals showed normal behavior and blood sample results during the follow-up period. This is the first histological demonstration of nitinol biocompatibility when the implant is positioned through an arterial wall and indicates that the trans-vessel wall technique is not comparable with stent placement and its ability to induce intimal hyperplasia and restenosis. CONCLUSIONS This study demonstrates that the trans-vessel wall technique is applicable to brain intervention in macaque monkeys, providing a micro-working channel for delivery or sampling. The long-term follow-up study of the detached device in swine showed no clinical or biochemical complications and a normal angiography appearance.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3