The force pyramid: a spatial analysis of force application during virtual reality brain tumor resection

Author:

Azarnoush Hamed12,Siar Samaneh2,Sawaya Robin1,Zhrani Gmaan Al13,Winkler-Schwartz Alexander1,Alotaibi Fahad Eid13,Bugdadi Abdulgadir14,Bajunaid Khalid15,Marwa Ibrahim1,Sabbagh Abdulrahman Jafar167,Del Maestro Rolando F.1

Affiliation:

1. Neurosurgical Simulation Research and Training Centre, Department of Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada;

2. Department of Biomedical Engineering, AmirKabir University of Technology (Tehran Polytechnic), Tehran, Iran;

3. National Neuroscience Institute, Department of Neurosurgery, King Fahad Medical City, Riyadh;

4. Department of Surgery, Faculty of Medicine, Umm Al-Qura University, Makkah Almukarramah;

5. Division of Neurosurgery, Faculty of Medicine, University of Jeddah; and

6. Division of Neurosurgery, Department of Surgery, Faculty of Medicine and

7. Clinical Skill and Simulation Center, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract

OBJECTIVEVirtual reality simulators allow development of novel methods to analyze neurosurgical performance. The concept of a force pyramid is introduced as a Tier 3 metric with the ability to provide visual and spatial analysis of 3D force application by any instrument used during simulated tumor resection. This study was designed to answer 3 questions: 1) Do study groups have distinct force pyramids? 2) Do handedness and ergonomics influence force pyramid structure? 3) Are force pyramids dependent on the visual and haptic characteristics of simulated tumors?METHODSUsing a virtual reality simulator, NeuroVR (formerly NeuroTouch), ultrasonic aspirator force application was continually assessed during resection of simulated brain tumors by neurosurgeons, residents, and medical students. The participants performed simulated resections of 18 simulated brain tumors with different visual and haptic characteristics. The raw data, namely, coordinates of the instrument tip as well as contact force values, were collected by the simulator. To provide a visual and qualitative spatial analysis of forces, the authors created a graph, called a force pyramid, representing force sum along the z-coordinate for different xy coordinates of the tool tip.RESULTSSixteen neurosurgeons, 15 residents, and 84 medical students participated in the study. Neurosurgeon, resident and medical student groups displayed easily distinguishable 3D “force pyramid fingerprints.” Neurosurgeons had the lowest force pyramids, indicating application of the lowest forces, followed by resident and medical student groups. Handedness, ergonomics, and visual and haptic tumor characteristics resulted in distinct well-defined 3D force pyramid patterns.CONCLUSIONSForce pyramid fingerprints provide 3D spatial assessment displays of instrument force application during simulated tumor resection. Neurosurgeon force utilization and ergonomic data form a basis for understanding and modulating resident force application and improving patient safety during tumor resection.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3