Cerebrospinal fluid pathways from cisterns to ventricles in N-butyl cyanoacrylate–induced hydrocephalic rats

Author:

Park Jong-Hyuk1,Park Yong-Sook1,Suk Jong-Sik1,Park Seung-Won1,Hwang Sung-Nam1,Nam Taek-Kyun1,Kim Young-Baeg1,Lee Won-Bok2

Affiliation:

1. Departments of Neurosurgery and

2. Anantomy, Chung-Ang University College of Medicine, Seoul, Korea

Abstract

Object Cerebrospinal fluid typically enters the subarachnoid space from the ventricles via the fourth ventricular foramina. However, there is clinical evidence that CSF also flows in the opposite direction. Ventricular reflux of CSF from a cistern is a well-known phenomenon in radioisotope studies in patients with normal-pressure hydrocephalus. Additionally, the presence of ventricular blood in acute subarachnoid hemorrhage is frequently observed. The goal of this investigation was to examine the potential CSF pathways from cisterns to ventricles. The authors examined pathways in rat models in which they occluded the fourth ventricular outlets and injected a tracer into the subarachnoid space. Methods The model for acute obstructive hydrocephalus was induced using N-butyl cyanoacrylate (NBCA) in 10 Sprague-Dawley rats. After 3 days, cationized ferritin was infused into the lumbar subarachnoid space to highlight retrograde CSF flow pathways. The animals were sacrificed at 48 hours, and the brains were prepared. The CSF flow pathway was traced by staining the ferritin with ferrocyanide. Results Ferritin was observed in the third ventricle in 7 of 8 rats with hydrocephalus and in the temporal horn of the lateral ventricles in 4 of 8 rats with hydrocephalus. There was no definite staining in the aqueduct, which suggests that the ventricular reflux originated from routes other than through the fourth ventricular outlets. Conclusions The interfaces between the quadrigeminal cistern and third ventricle and those between the ambient cistern and lateral ventricle appear to be potential sites of CSF reflux from cisterns to ventricles in obstructive hydrocephalus.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3