A real-time optimal inverse planning for Gamma Knife radiosurgery by convex optimization: description of the system and first dosimetry data

Author:

Levivier Marc1,Carrillo Rafael E.23,Charrier Rémi4,Martin André4,Thiran Jean-Philippe2

Affiliation:

1. Department of Neurosurgery and Gamma Knife Center, Lausanne University Hospital, Lausanne;

2. Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL);

3. CSEM SA, Neuchâtel; and

4. Intuitive Therapeutics SA, Saint-Sulpice, Switzerland

Abstract

OBJECTIVEThe authors developed a new, real-time interactive inverse planning approach, based on a fully convex framework, to be used for Gamma Knife radiosurgery.METHODSThe convex framework is based on the precomputation of a dictionary composed of the individual dose distributions of all possible shots, considering all their possible locations, sizes, and shapes inside the target volume. The convex problem is solved to determine the plan, i.e., which shots and with which weights, that will actually be used, considering a sparsity constraint on the shots to fulfill the constraints while minimizing the beam-on time. The system is called IntuitivePlan and allows data to be transferred from generated dose plans into the Gamma Knife treatment planning software for further dosimetry evaluation.RESULTSThe system has been very efficiently implemented, and an optimal plan is usually obtained in less than 1 to 2 minutes, depending on the complexity of the problem, on a desktop computer or in only a few minutes on a high-end laptop. Dosimetry data from 5 cases, 2 meningiomas and 3 vestibular schwannomas, were generated with IntuitivePlan. Results of evaluation of the dosimetry characteristics are very satisfactory and adequate in terms of conformity, selectivity, gradient, protection of organs at risk, and treatment time.CONCLUSIONSThe possibility of using optimal, interactive real-time inverse planning in conjunction with the Leksell Gamma Knife opens new perspectives in radiosurgery, especially considering the potential use of the full capabilities of the latest generations of the Leksell Gamma Knife. This approach gives new users the possibility of using the system for easier and quicker access to good-quality plans with a shorter technical training period and opens avenues for new planning strategies for expert users. The use of a convex optimization approach allows an optimal plan to be provided in a very short processing time. This way, innovative graphical user interfaces can be developed, allowing the user to interact directly with the planning system to graphically define the desired dose map and to modify on-the-fly the dose map by moving, in a very user-friendly manner, the isodose surfaces of an initial plan. Further independent quantitative prospective evaluation comparing inverse planned and forward planned cases is warranted to validate this novel and promising treatment planning approach.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

Reference36 articles.

1. Radiosurgery treatment planning via nonlinear programming;Ferris;Ann Oper Res,2001

2. Radiosurgery treatment planning via nonlinear programming;Ferris;Ann Oper Res,2001

3. Real-time inverse planning for Gamma Knife radiosurgery;Wu;Med Phys,2003

4. The Leksell Gamma Knife Perfexion and comparisons with its predecessors;Lindquist;Neurosurgery,2007

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3