Intubation biomechanics: validation of a finite element model of cervical spine motion during endotracheal intubation in intact and injured conditions

Author:

Gadomski Benjamin C.1,Shetye Snehal S.1,Hindman Bradley J.2,Dexter Franklin2,Santoni Brandon G.3,Todd Michael M.4,Traynelis Vincent C.5,From Robert P.2,Fontes Ricardo B.5,Puttlitz Christian M.1

Affiliation:

1. Department of Mechanical Engineering, School of Biomedical Engineering, Orthopaedic Bioengineering Research Laboratory, Colorado State University, Fort Collins, Colorado;

2. Department of Anesthesia, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa;

3. Foundation for Orthopaedic Research and Education, Tampa, Florida;

4. Department of Anesthesia, University of Minnesota, Minneapolis, Minnesota; and

5. Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois

Abstract

OBJECTIVEBecause of limitations inherent to cadaver models of endotracheal intubation, the authors’ group developed a finite element (FE) model of the human cervical spine and spinal cord. Their aims were to 1) compare FE model predictions of intervertebral motion during intubation with intervertebral motion measured in patients with intact cervical spines and in cadavers with spine injuries at C-2 and C3–4 and 2) estimate spinal cord strains during intubation under these conditions.METHODSThe FE model was designed to replicate the properties of an intact (stable) spine in patients, C-2 injury (Type II odontoid fracture), and a severe C3–4 distractive-flexion injury from prior cadaver studies. The authors recorded the laryngoscope force values from 2 different laryngoscopes (Macintosh, high intubation force; Airtraq, low intubation force) used during the patient and cadaver intubation studies. FE-modeled motion was compared with experimentally measured motion, and corresponding cord strain values were calculated.RESULTSFE model predictions of intact intervertebral motions were comparable to motions measured in patients and in cadavers at occiput–C2. In intact subaxial segments, the FE model more closely predicted patient intervertebral motions than did cadavers. With C-2 injury, FE-predicted motions did not differ from cadaver measurements. With C3–4 injury, however, the FE model predicted greater motions than were measured in cadavers. FE model cord strains during intubation were greater for the Macintosh laryngoscope than the Airtraq laryngoscope but were comparable among the 3 conditions (intact, C-2 injury, and C3–4 injury).CONCLUSIONSThe FE model is comparable to patients and cadaver models in estimating occiput–C2 motion during intubation in both intact and injured conditions. The FE model may be superior to cadavers in predicting motions of subaxial segments in intact and injured conditions.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3