Author:
Kandziora Frank,Pflugmacher Robert,Schaefer Jan,Scholz Matti,Ludwig Kathrin,Schleicher Philip,Haas Norbert P.
Abstract
Object
Recently, expandable cages for vertebral body replacement in the cervical spine have been developed. The purpose of this study was to compare the biomechanical properties of expandable cages with those of a tricortical iliac crest graft and a nonexpandable cage.
Methods
Forty human cervical spines (C3–5) were tested in flexion, extension, axial rotation, and lateral bending. First all motion segments were evaluated intact. After corpectomy of C-4 the spines were divided into five groups of eight and the following stabilization techniques were used: 1) autologous iliac crest bone graft; 2) mesh titanium cage; 3) anterior distraction device; 4) Synex-C titanium; and 5) Synex-C PEEK. Additionally, anterior plating and anterior plating plus posterior screw/rod fixation were applied. Stiffness, range of motion, and neutral and elastic zones were determined.
In comparison with the intact motion segment all implants significantly increased stiffness in flexion and bending, but decreased stiffness in extension. There were no biomechanical differences between the nonexpandable and expandable cages. Furthermore, there were no biomechanical differences between the tricortical iliac crest graft and the cages, except for Synex-C in rotation. Additional anterior plating significantly increased biomechanical stiffness in all test modes; particularly in rotation mode, combined anterior-posterior stabilization increased stiffness by up to 102% compared with anterior plating alone.
Conclusions
In comparison to a tricortical iliac crest bone graft and a nonexpandable cage, expandable cages have no biomechanical advantages. Due to the low extension and rotational stiffness, none of the implants can be recommended as a stand-alone device. Additional anterior plating increased biomechanical stability adequately. Therefore, additional posterior stabilization should only be considered in cases of severe rotational instability of the cervical spine.
Publisher
Journal of Neurosurgery Publishing Group (JNSPG)
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献