Author:
Detwiler Paul W.,Spetzler Christina B.,Taylor Sara B.,Crawford Neil R.,Porter Randall W.,Sonntag Volker K. H.
Abstract
Object. The authors compared differences in biomechanical stability between two decompressive laminectomy techniques for treating lumbar stenosis. A Christmas tree laminectomy (CTL), in which bilateral facetectomies and foraminotomies are performed, was compared with facet-sparing laminectomy (FSL), in which the facets are undercut but not resected. Spinal instability was assessed immediately postoperatively and again after discectomy to model long-term degeneration.
Methods. Sixteen motion segments obtained from five human cadaveric lumbar specimens were studied in vitro by conducting nondestructive flexibility tests. Specimens were tested intact, after FSL or CTL, and again after discectomy. Nonconstraining torques (≤ 5 Nm) were applied to induce flexion, extension, axial rotation, and lateral bending; strings and pulleys were used while vertebral angles were measured. Anteroposterior translation in response to shear loading (≤ 100 N) was also measured. Angular motion, shear motion, and sagittal-plane axes of rotation were compared to evaluate stability.
Compared with the intact condition, CTL-treated specimens had significantly larger increases in angular motion during flexion, lateral bending, and axial rotation than their FSL-treated counterparts (p < 0.05, nonpaired Student t-tests). Subsequent discectomy caused greater increases in motion in the CTL group. Axes of rotation shifted less from their normal positions after FSL than after CTL.
Conclusions. This study provides objective evidence that the treatment of lumbar stenosis with FSL induces less biomechanical instability and alters kinematics less than FSL. These findings support the use of the FSL in treating lumbar stenosis.
Publisher
Journal of Neurosurgery Publishing Group (JNSPG)
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献