The subthalamic nucleus at 3.0 Tesla: choice of optimal sequence and orientation for deep brain stimulation using a standard installation protocol

Author:

Kerl Hans U.1,Gerigk Lars2,Pechlivanis Ioannis3,Al-Zghloul Mansour1,Groden Christoph1,Nölte Ingo1

Affiliation:

1. Departments of Neuroradiology and

2. Division of Radiology, German Cancer Research Center, Heidelberg, Germany

3. Neurosurgery, University of Heidelberg, Medical Faculty Mannheim; and

Abstract

Object Reliable visualization of the subthalamic nucleus (STN) is indispensable for accurate placement of electrodes in deep brain stimulation (DBS) surgery for patients with Parkinson disease (PD). The aim of the study was to evaluate different promising new MRI methods at 3.0 T for preoperative visualization of the STN using a standard installation protocol. Methods Magnetic resonance imaging studies (T2-FLAIR, T1-MPRAGE, T2*-FLASH2D, T2-SPACE, and susceptibility-weighted imaging sequences) obtained in 9 healthy volunteers and in 1 patient with PD were acquired. Two neuroradiologists independently analyzed image quality and visualization of the STN using a 6-point scale. Interrater reliability, contrast-to-noise ratios, and signal-to-noise ratios for the STN were calculated. For illustration of the anatomical accuracy, coronal T2*-FLASH2D images were fused with the corresponding coronal section schema of the Schaltenbrand and Wahren stereotactic atlas. Results The STN was best and reliably visualized on T2*-FLASH2D imaging (in particular, the coronal view). No major artifacts in the STN were observed in any of the sequences. Susceptibility-weighted, T2-SPACE, and T2*-FLASH2D imaging provided significantly higher contrast-to-noise ratio values for the STN than standard T2-weighted imaging. Fusion of the coronal T2*-FLASH2D and the digitized coronal atlas view projected the STN clearly within the boundaries of the STN found in anatomical sections. Conclusions For 3.0-T MRI, T2*-FLASH2D (particularly the coronal view) provides optimal delineation of the STN using a standard installation protocol.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3