Intracranial pressure waves: characterization of a pulsation absorber with notch filter properties using systems analysis

Author:

Zou Rui1,Park Eun-Hyoung1,Kelly Erin McCormack2,Egnor Michael3,Wagshul Mark E.234,Madsen Joseph R.1

Affiliation:

1. Neurosurgery Department, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts; and

2. Departments of Biomedical Engineering,

3. Neurosurgery, and

4. Radiology, Stony Brook University, Stony Brook, New York

Abstract

Object The relationship between the waveform of intracranial pressure (ICP) and arterial blood pressure can be quantitatively characterized using a newly developed technique in systems analysis, the time-varying transfer function. This technique considers the arterial blood pressure as an input signal composed of multiple frequencies represented in the output ICP according to the transfer function imposed by the intracranial system on the input signal. The transfer function can change with time and with physiological manipulations. The authors examined data obtained from canine experiments involving manipulations of ICP. Methods The authors analyzed 11 experiments from 3 normal mongrel dogs under conditions of normal ICP and with changes in ICP made by bolus injection, infusion, or withdrawal of cerebrospinal fluid by using time-varying transfer function. Results During normal ICP periods, the gain of the transfer function displayed a deep notch (≥ 1 log unit) centered at or near the cardiac frequency. In systems terms, the intracranial compartment under normal conditions appears to act as a notch filter attenuating the cardiac frequency input relative to other frequencies. Epochs of ICP elevation showed suppression of the notch, and the notch was restored when ICP returned to normal. Conclusions The intracranial system in these animals could be considered to include a pulsation absorber for which the target frequency appears to be close to the cardiac frequency. One possible source for such an absorber mechanism might be the free movement of cerebrospinal fluid, implying that impairment of this motion may have important clinical implications in various neurological conditions such as hydrocephalus.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3