Intracranial biomechanics following cortical contusion in live rats

Author:

Alfasi Abdulghader M.1,Shulyakov Alexander V.2,Del Bigio Marc R.32

Affiliation:

1. Departments of Human Anatomy and Cell Science and

2. Manitoba Institute of Child Health, Winnipeg, Canada

3. Pathology, University of Manitoba, Winnipeg, Canada;

Abstract

Object The goal of this study was to examine the mechanical properties of living rat intracranial contents and corresponding brain structural alterations following parietal cerebral cortex contusion. Methods After being anesthetized, young adult rats were subjected to parietal craniotomy followed by cortical contusion using a calibrated weight-drop method. Magnetic resonance imaging was used to visualize the contusion. At the site of contusion, instrumented force-controlled indentation was performed 2 hours to 21 days later on the intact dural surface. The force-deformation (stress-strain) relationship was used to calculate elastic (indentation modulus) and strain changes over time, and constant hold or cyclic stress was used to evaluate viscoelastic deformation. These measurements were followed by histological studies. Results At contusion sites, the indentation modulus was significantly decreased at 1–3 days and tended to be above control values at 21 days. Multicycle indentation showed that the brain tended to accumulate more strain (an indicator of viscosity) by 1 day after the contusion. Imaging and histological studies showed local edema and hemorrhage at 6 hours to 3 days and accumulation of reactive astrocytes, which began at 3 days and was pronounced by 21 days. Conclusions The viscoelastic properties of living rat brain change following contusion. Initially, edema and tissue necrosis occur, and the brain becomes less elastic and less viscous. Later, along with undergoing reactive astroglial changes, the brain tends to become stiffer than normal. These quantitative data, which are related to the physical changes in the brain following trauma and which reflect subjective impressions upon palpation, will be useful for understanding emerging diagnostic tools such as magnetic resonance elastography.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3