Effects of rod diameter on kinematics of posterior cervical spine instrumented constructs: an ex vivo study

Author:

Kiapour Ali1,Khandha Ashutosh2,Massaad Elie1,Connolly Ian D.1,Hadzipasic Muhamed1,Shankar Ganesh M.1,Goel Vijay3,Shin John H.1

Affiliation:

1. Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts;

2. Department of Biomedical Engineering, University of Delaware, Newark, Delaware; and

3. Engineering Center for Orthopaedic Research Excellence (E-CORE), Department of Bioengineering Engineering, The University of Toledo, Ohio

Abstract

OBJECTIVE Posterior cervical spine fixation is a robust strategy for stabilizing the spine for a wide range of spinal disorders. With the evolution of spinal implant technology, posterior fixation with lateral mass screws in the subaxial spine is now common. Despite interest in variable rod diameters to meet a wide range of clinical needs such as trauma, revision, and deformity surgery, indications for use of posterior cervical spine fixation are not clear. This laboratory investigation evaluates the mechanical stability and kinematic properties of lateral mass fixation with various commercially available rod diameters. METHODS The authors conducted an ex vivo experiment using 13 fresh-frozen human cervical spine specimens, instrumented from C3 to C6 with lateral mass screws, to evaluate the effects of titanium rod diameter on kinematic stability. Each intact spine was tested using a kinematic profiling machine with an optoelectrical camera and infrared sensors applying 1.5-Nm bending moments to the cranial vertebra (C2) simulating flexion-extension, lateral bending, and axial rotation anatomical motions. A compressive follower preload of 150 N was applied in flexion-extension prior to application of a bending moment. Instrumented spines were then tested with rod diameters of 3.5, 4.0, and 4.5 mm. The kinematic data between intact and surgical cases were studied using a nonparametric Wilcoxon signed-rank test. A multivariable, multilevel linear regression model was built to identify the relationship between segmental motion and rod diameter. RESULTS Instrumentation resulted in significant reduction in range of motion in all three rod constructs versus intact specimens in flexion-extension, lateral bending, and axial rotation (p < 0.05). The maximum reductions in segmental ROM versus intact spines in 3.5-, 4.0-, and 4.5-mm rod constructs were 61%, 71%, and 81% in flexion-extension; 70%, 76%, and 81% in lateral bending; and 50%, 60%, and 75% in axial rotation, respectively. Segmental motion at the adjacent segments (C2–3 and C6–7) increased significantly (p < 0.05) with increasing rod diameter. The 4.5-mm rod construct had the greatest increase in motion compared to the intact spine. CONCLUSIONS With increasing rod diameters from 3.5 to 4.0 mm, flexion-extension, lateral bending, and axial rotation across C3–6 were significantly reduced (p < 0.05). Similar trends were observed with a statistically significant reduction in motion in all anatomical planes when the rod diameter was increased to 4.5 mm. Although the increase in rod diameter resulted in a more rigid construct, it also created an increase (p < 0.05) in the kinematics of the adjacent segments (C2–3 and C6–7). Whether this increase translates into adverse long-term clinical effects in vivo requires further investigation and clinical assessment.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

General Medicine

Reference33 articles.

1. Biomechanical evaluation of cervical lateral mass fixation: a comparison of the Roy-Camille and Magerl screw techniques;Barrey C,2004

2. Posterior lateral mass plate fixation of the cervical spine;Lindsey RW,2000

3. Techniques and pitfalls of cervical lateral mass plate fixation;Muffoletto AJ,2000

4. Internal fixation on the lower cervical spine—biomechanics and clinical practice of procedures and implants;Ulrich C,2001

5. Complications of posterior articular mass plate fixation of the subaxial cervical spine in 43 consecutive patients;Wellman BJ,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3