Teaching Algorithms Design Approaches via Interactive Jupyter Notebooks

Author:

TOPSAKAL Oguzhan1ORCID

Affiliation:

1. Florida Polytechnic University

Abstract

Interactive learning environments play a crucial role in facilitating effective education. Traditional approaches to teaching algorithm design techniques often lack interactivity, resulting in a limited learning experience. In this article, we propose the utilization of Jupyter Notebooks, renowned for their versatility in combining code, visualizations, and explanations, as a powerful tool for enhancing understanding and promoting an engaging learning experience in teaching algorithm design techniques. We provide a comprehensive structure for a Jupyter Notebook page, encompassing problem descriptions, brute force solutions, algorithm design techniques, application areas, and references, to present a thorough solution for computer science problems using these design techniques. Our study includes experiments conducted with computer science students, demonstrating the practical application of Jupyter Notebooks in algorithm design education. Furthermore, we share sample Jupyter Notebooks for popular algorithm design techniques, including Divide & Conquer, Greedy, Dynamic Programming, and Backtracking. Importantly, we emphasize the significance of interactive comparisons between brute force solutions and algorithm design techniques, which foster valuable learning opportunities by providing insights into performance improvements, complexity analysis, validation, optimization strategies, trade-offs, and a deeper understanding of algorithmic principles. In conclusion, we propose the integration of Jupyter Notebooks as a potent tool for teaching algorithm design approaches, empowering learners to actively engage with the material, visualize complex concepts, and collaborate effectively. By incorporating Jupyter Notebooks into algorithm design education, instructors can enhance students' comprehension, cultivate critical thinking skills, and facilitate a profound understanding of algorithmic principles and optimization strategies.

Publisher

INESEG Yayincilik

Subject

General Earth and Planetary Sciences

Reference16 articles.

1. [1] Neapolitan, R., & Naimipour, K. (2010). Foundations of algorithms. Jones & Bartlett Publishers.

2. [2] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2022). Introduction to algorithms. MIT press.

3. [3] Yadav, A., Gretter, S., Hambrusch, S., & Sands, P. (2016). Expanding computer science education in schools: understanding teacher experiences and challenges. Computer science education, 26(4), 235-254.

4. [4] Project Jupyter, https://jupyter.org/ (accessed Jun. 17, 2023).

5. [5] Forišek, M., Steinová, M. (2013). Explaining Algorithms Using Metaphors. Springer Briefs in Computer Science. Springer, London. https://doi.org/10.1007/978-1-4471-5019-0_1.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3