Gene Expression Analysis of Murine Lungs Following Pulmonary Exposure to Asian Sand Dust Particles

Author:

Yanagisawa Rie1,Takano Hirohisa1,Ichinose Takamichi1,Mizushima Katsura1,Nishikawa Masataka1,Mori Ikuko1,Inoue Ken-ichiro1,Sadakane Kaori1,Yoshikawa Toshikazu1

Affiliation:

1. Environmental Health Sciences Division, National Institute for Environmental Studies, Tsukuba, 305-8506 Japan; Inflammation and Immunology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566 Japan; Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita, 870-1201 Japan; and Laboratory for Intellectual Fundamentals for Environmental Studies, National Institute for Environmental Studies, Tsukuba, 305-8506 Japan

Abstract

The respiratory health impact of Asian sand dust events originating in the deserts of China has become a concern within China and in its neighboring countries. We examined the effects of Asian sand dust particles (ASDPs) on gene expression in the murine lung using microarray analysis and elucidated the components responsible for lung inflammation. Male ICR mice were intratracheally administrated ASDPs, heat-treated ASDPs (ASDP-F, lipopolysaccaride [LPS], or β-glucan free), or kaolin particles. We performed microarray analysis for murine lungs, the results of which were confirmed by quantitative reverse transcription–polymerase chain reaction (RT-PCR). We also assessed the protein expression and histologic changes. Exposure to ASDP, ASDP-F, or kaolin upregulated (>2-fold) 112, 36, or 9 genes, respectively, compared with vehicle exposure. In particular, ASDP exposure markedly enhanced inflammatory response–related genes, including chemokine (C-X-C motif) ligand 1/keratinocyte-derived chemokine, chemokine (C-X-C motif) ligand 2/macrophage inflammatory protein-2, chemokine (C-C motif) ligand 3/macrophage inflammatory protein-1α, and chemokine (C-X-C motif) ligand 10/interferon-gamma–inducible protein-10 (>6-fold). The results were correlated with those of the quantitative RT-PCR and the protein expression analyses in overall trend. In contrast, exposure to ASDP-F attenuated the enhanced expression of these proinflammatory molecules. Kaolin exposure increased the expression of genes and proteins for the chemokines. In histopathologic changes, exposure to ASDP prominently enhanced pulmonary neutrophilic inflammation, followed by kaolin and ASDP-F exposure in the order. Taken together, exposure to ASDP causes pulmonary inflammation via the expression of proinflammatory molecules, which can be attributed to LPS and β-glucan absorbed in ASDPs. Furthermore, microarray analysis should be effective for identifying potentially novel genes, sensitive biomarkers, and pathways involved in the health effects of the exposure to environmental particles (e.g., ASDPs).

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3