Environmental Enrichment Induces Synaptic Structural Modification After Transient Focal Cerebral Ischemia in Rats

Author:

Xu Xiaohong1,Ye Lingjing1,Ruan Qin1

Affiliation:

1. Chemistry and Life Science College, Zhejiang Normal University, Jinhua, Zhejiang 321004, China; and Ecology Research Institution, Zhejiang Normal University, Jinhua, Zhejiang 321004, China

Abstract

Environmental enrichment (EE), where animals are exposed to a complex novel environment, has been shown to induce synaptic plasticity in both intact and injured animals. The purpose of this study was to investigate the effects of EE on spatial memory and structural modifications of synaptic junctions in rats following transient focal cerebral ischemia. Adult male Sprague-Dawley rats underwent right middle cerebral artery occlusion (MCAO) for 40 min and reperfusion. On day 3 after MCAO or sham surgery, rats were randomly assigned for 14 days to enriched or standard environmental housing. Spatial memory was then tested by the Morris water maze. Parietal cortex and the CA1 region of hippocampus were processed for electron microscopy and stereological techniques were used to evaluate plasticity of synaptic junctions. EE after MCAO improved spatial memory, with shortened escape length, increased frequency of crossings at the location of the platform, and increased percentage of time spent in the quadrant where the platform was previously located. Synaptic ultrastructural analysis showed that EE after MCAO increased numeric synaptic density in parietal cortex, and induced structural changes in synaptic junctions, with a decreased width of synaptic clefts and increased thickness of postsynaptic densities (PSD) in parietal cortex and hippocampus, accompanying improved performance on the spatial memory task. Using Western blot analysis, we determined the expression of glutamate receptor NMDAR1, and PSD-95, the best characterized protein member of the PSD-95 family, that was abundantly expressed in the PSD of excitatory synapses. The results showed that the content of NMDAR1 was not altered in MCAO rats of EE; however, the phosphorylated NMDAR1 increased significantly when compared with the standard environment housing MCAO rats. In addition, EE inhibited the impaired expression of PSD-95 induced by MCAO in parietal cortex and hippocampus. These data suggest that improved spatial memory of cerebral ischemic rats by EE is associated with structural modifications of synaptic junctions in several brain regions.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3