Role of Oxidative Stress and NFkB in Hypoxia-Induced Pulmonary Edema

Author:

Sarada Sagi1,Himadri Patir1,Mishra Chitaranjan1,Geetali Pradhan1,Ram Mastoori Sai1,Ilavazhagan Govindan1

Affiliation:

1. Department of Experimental Biology, Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi, India

Abstract

Hypoxia is well known to increase the free radical generation in the body, leading to oxidative stress. In the present study, we have determined whether the increased oxidative stress further upregulates the nuclear transcription factor (NFkB) in the development of pulmonary edema. The rats were exposed to hypobaric hypoxia at 7620 m (280 mm Hg) for different durations, that is, 3 hrs, 6 hrs, 12 hrs, and 24 hrs at 25 ± 1°C. The results revealed that exposure of animals to hypobaric hypoxia led to a significant increase in vascular leakage, with time up to 6 hrs (256.38 ± 61 rfu/g) as compared with control (143.63 ± 60.1 rfu/g). There was a significant increase in reactive oxygen species, lipid peroxidation, and superoxide dismutase levels, with a concurrent decrease in lung glutathione peroxidase activity. There was 13-fold increase in the expression of NFkB level in nuclear fraction of lung homogenates of hypoxic animals over control rats. The DNA binding activity of NFkB was found to be increased significantly ( P < 0.001) in the lungs of rats exposed to hypoxia as compared with control. Further, we observed a significant increase in proinflammatory cytokines such as IL-1, IL-6, and TNF-α with concomitant upregulation of cell adhesion molecules such as ICAM-I, VCAM-I, and P-selectin in the lung of rats exposed to hypoxia as compared with control. Interestingly, pretreatment of animals with curcumin (NFkB blocker) attenuated hypoxia-induced vascular leakage in lungs with concomitant reduction of NFkB levels. The present study therefore reveals the possible involvement of NFkB in the development of pulmonary edema.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3