Affiliation:
1. Department of Experimental Biology, Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi, India
Abstract
Hypoxia is well known to increase the free radical generation in the body, leading to oxidative stress. In the present study, we have determined whether the increased oxidative stress further upregulates the nuclear transcription factor (NFkB) in the development of pulmonary edema. The rats were exposed to hypobaric hypoxia at 7620 m (280 mm Hg) for different durations, that is, 3 hrs, 6 hrs, 12 hrs, and 24 hrs at 25 ± 1°C. The results revealed that exposure of animals to hypobaric hypoxia led to a significant increase in vascular leakage, with time up to 6 hrs (256.38 ± 61 rfu/g) as compared with control (143.63 ± 60.1 rfu/g). There was a significant increase in reactive oxygen species, lipid peroxidation, and superoxide dismutase levels, with a concurrent decrease in lung glutathione peroxidase activity. There was 13-fold increase in the expression of NFkB level in nuclear fraction of lung homogenates of hypoxic animals over control rats. The DNA binding activity of NFkB was found to be increased significantly ( P < 0.001) in the lungs of rats exposed to hypoxia as compared with control. Further, we observed a significant increase in proinflammatory cytokines such as IL-1, IL-6, and TNF-α with concomitant upregulation of cell adhesion molecules such as ICAM-I, VCAM-I, and P-selectin in the lung of rats exposed to hypoxia as compared with control. Interestingly, pretreatment of animals with curcumin (NFkB blocker) attenuated hypoxia-induced vascular leakage in lungs with concomitant reduction of NFkB levels. The present study therefore reveals the possible involvement of NFkB in the development of pulmonary edema.
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
108 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献