High Plasma Levels of MCP-1 and Eotaxin Provide Evidence for an Immunological Basis of Fibromyalgia

Author:

Zhang Zhifang1,Cherryholmes Gregory1,Mao Allen1,Marek Claudia1,Longmate Jeffrey1,Kalos Michael1,Amand R. Paul ST.1,Shively John E.1

Affiliation:

1. Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, California 91010; Fibromyalgia Treatment Center, Los Angeles, California 90064; Division of Biostatistics and Bioinformatics, City of Hope, Duarte, California 91010; and Division of Cancer Immunotherapy and Tumor Immunology, City of Hope, Duarte, California 91010

Abstract

Fibromyalgia (FMS), a predominantly female (85%) syndrome, affects an estimated 2% of the US population with skeletal muscle ache, fatigue, headache, and sleep disorder. The pathogenesis of FMS is unknown and there is no laboratory test for diagnosis. In this study, plasma levels of 25 cytokines and chemokines in 92 female patients with FMS and 69 family members were measured compared to 77 controls. Trans-endothelial migration of normal leukocytes in response to FMS plasma and the cytokine profile of human myoblasts were analyzed. High levels of MCP-1 ( P < 0.001) and eotaxin ( P < 0.01) were found in patients and family members compared to controls. Patients (56/92) treated with the single agent guaifenesin (>3 months) had higher levels of eotaxin than those not treated ( P < 0.01). Diluted plasma from patients increased the migration of normal eosinophils and monocytes, but not neutrophils, through an endothelial/Matrigel barrier only when mast cells are included in the lower wells ( P < 0.05). Furthermore, myoblasts can secrete MCP-1, eotaxin, and IP-10, while treatment with MCP-1 caused secretion of IL-1β, eotaxin and IP-10. FMS is associated with inflammatory chemokines, that MCP-1 and eotaxin may contribute to the symptoms of FMS, and that similar cytokine profiles found in family members support the idea that FMS has a genetic component. Furthermore, the chemokine profile associated with FMS has direct effects on the migration of eosinophils and monocytes in the presence of mast cells, and skeletal muscle itself may secrete

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3