ACE-Dependent and Chymase-Dependent Angiotensin II Generation in Normal and Glucose-Stimulated Human Mesangial Cells

Author:

Cristovam Priscila C.1,Arnoni Carine P.1,de Andrade Maria Claudina C.1,Casarini Dulce E.1,Pereira Luciana G.1,Schor Nestor1,Boim Mirian A.1

Affiliation:

1. Department of Medicine–Renal Division, Federal University of São Paulo, São Paulo, Brazil

Abstract

High glucose (HG) increases angiotensin II (AngII) generation in mesangial cells (MC). Chymase, an alternative AngII-generating enzyme, is upregulated in the glomeruli of diabetic kidneys. In this study, we examined AngII synthesis by human MC via angiotensin-converting enzyme (ACE)-dependent and chymase-dependent pathways under normal glucose (NG, 5 m M) and HG (30 m M) conditions. NG cells expressed ACE and chymase mRNA. Under NG conditions the chymase inhibitor chymostatin reduced AngII levels in cell lysates and in the culture medium, and the ACE inhibitor captopril had no effect. HG induced a 3-fold increase in chymase mRNA and protein but not in ACE mRNA; however, HG induced a 10-fold increase in intracellular ACE activity. The increase in AngII generation induced by HG was found in the cell lysate but not in the culture medium. The rise in intracellular AngII was not prevented by captopril or by chymostatin. Moreover, captopril inhibited extracellular ACE activity but failed to block intracellular ACE activity; these results suggested that captopril was unable to reach intra-cellular ACE. Losartan did not change the intracellular AngII content in either NG or HG conditions, and this lack of change suggested that the increase in AngII was due to intracellular generation. Together these results suggest that chymase may be active in human MC and that both ACE and chymase are involved in increased AngII generation during the HG stimulus by different mechanisms, including an upregulation of chymase mRNA and a rise in intracellular ACE activity, favoring the generation and accumulation of intracellular AngII.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3