Affiliation:
1. Bogomoletz Institute of Physiology, Kiev, Ukraine; Institute of General Pathology and Pathophysiology, Moscow, Russia; and University of North Texas Health Science Center, Fort Worth, Texas
Abstract
During acute episodes of hypoxia, chemoreceptor-mediated sympathetic activity increases heart rate, cardiac output, peripheral resistance and systemic arterial pressure. However, different intermittent hypoxia paradigms produce remarkably divergent effects on systemic arterial pressure in the post-hypoxic steady state. The hypertensive effects of obstructive sleep apnea (OSA) vs. the depressor effects of therapeutic hypoxia exemplify this divergence. OSA, a condition afflicting 15–25% of American men and 5–10% of women, has been implicated in the pathogenesis of systemic hypertension and is a major risk factor for heart disease and stroke. OSA imposes a series of brief, intense episodes of hypoxia and hypercapnia, leading to persistent, maladaptive chemoreflex-mediated activation of the sympathetic nervous system which culminates in hypertension. Conversely, extensive evidence in animals and humans has shown controlled intermittent hypoxia conditioning programs to be safe, efficacious modalities for prevention and treatment of hypertension. This article reviews the pertinent literature in an attempt to reconcile the divergent effects of intermittent hypoxia therapy and obstructive sleep apnea on hypertension. Special emphasis is placed on research conducted in the nations of the former Soviet Union, where intermittent hypoxia conditioning programs are being applied therapeutically to treat hypertension in patients. Also reviewed is evidence regarding mechanisms of the pro- and anti-hypertensive effects of intermittent hypoxia.
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
143 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献