Genetic and Epigenetic Control of Molecular Alterations in Hepatocellular Carcinoma

Author:

Feo Francesco1,Frau Maddalena1,Tomasi Maria L.1,Brozzetti Stefania1,Pascale Rosa M.1

Affiliation:

1. Department of Biomedical Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; and Department of Surgery “Pietro Valdoni”, University of Rome “La Sapienza”, 00161 Rome, Italy

Abstract

Comparative analysis of hepatocellular carcinoma (HCC) in rat strains that are either susceptible or resistant to the induction of HCC has allowed the mapping of genes responsible for inherited predisposition to HCC. These studies show that the activity of several low penetrance genes and a predominant susceptibility gene regulate the development of hepatocarcinogenesis in rodents. These studies shed light on the epidemiology of human HCC. The identified genes regulate resistance to hepatocarcinogenesis by affecting the capacity of the initiated cells to grow autonomously and to progress to HCC. Analysis of the molecular alterations showed highest iNos cross-talk with IKK/NF-kB and RAS/ERK pathways in most aggressive liver lesions represented by HCC in the susceptible F344 rats. Unrestrained extracellular signal-regulated kinase (Erk) activity linked to proteasomal degradation of dual-specificity phosphatase 1 (Dusp1), a specific ERK inhibitor, by the CKS1-SKP2 ubiquitin ligase complex was highest in more aggressive HCC of genetically susceptible rats. Furthermore, deregulation of G1 and S phases of the cell cycle occurs in HCC of susceptible F344 rats, leading to pRb hyperphosphorylation and elevated DNA synthesis, whereas a block to G1-S transition is present in the HCC of resistant BN rats. Importantly, similar alterations in the signaling pathways that regulate cell cycle progression were found in human HCC with poorer prognosis (as defend by patients’ survival length), whereas human HCC with better prognosis had molecular characteristics similar to the lesions in the HCC of resistant rat strains. This review discusses the role of molecular alterations involved in the acquisition of resistance or susceptibility to HCC and the importance of genetically susceptible and resistant rat models for the identification of prognostic markers, and chemopreventive or therapeutic targets for the biological network therapy of human disease.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3